* Single-precision log2 function.
*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "log2f_data.h"
LOG2F_TABLE_BITS = 4
LOG2F_POLY_ORDER = 4
ULP error: 0.752 (nearest rounding.)
Relative error: 1.9 * 2^-26 (before rounding.)
*/
#define N (1 << LOG2F_TABLE_BITS)
#define T __log2f_data.tab
#define A __log2f_data.poly
#define OFF 0x3f330000
float log2f(float x)
{
double_t z, r, r2, p, y, y0, invc, logc;
uint32_t ix, iz, top, tmp;
int k, i;
ix = asuint(x);
if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
return 0;
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
if (ix * 2 == 0)
return __math_divzerof(1);
if (ix == 0x7f800000)
return x;
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
return __math_invalidf(x);
ix = asuint(x * 0x1p23f);
ix -= 23 << 23;
}
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
top = tmp & 0xff800000;
iz = ix - top;
k = (int32_t)tmp >> 23;
invc = T[i].invc;
logc = T[i].logc;
z = (double_t)asfloat(iz);
r = z * invc - 1;
y0 = logc + (double_t)k;
r2 = r * r;
y = A[1] * r + A[2];
y = A[0] * r2 + y;
p = A[3] * r + y0;
y = y * r2 + p;
return eval_as_float(y);
}