* M_APM - mapm_lg2.c
*
* Copyright (C) 2003 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
* $Id: mapm_lg2.c,v 1.9 2007/12/03 01:42:06 mike Exp $
*
* This file contains the iterative function to compute the LOG
* This is an internal function to the library and is not intended
* to be called directly by the user.
*
* $Log: mapm_lg2.c,v $
* Revision 1.9 2007/12/03 01:42:06 mike
* Update license
*
* Revision 1.8 2003/05/12 17:52:15 mike
* rearrange some logic
*
* Revision 1.7 2003/05/03 11:24:51 mike
* optimize decimal places
*
* Revision 1.6 2003/05/01 21:58:27 mike
* remove math.h
*
* Revision 1.5 2003/05/01 20:53:38 mike
* implement a new algorithm for log
*
* Revision 1.4 2003/04/09 20:21:29 mike
* fix rare corner condition by intentionally inducing a
* 10 ^ -5 error in the initial guess.
*
* Revision 1.3 2003/03/31 22:13:15 mike
* call generic error handling function
*
* Revision 1.2 2003/03/30 21:27:22 mike
* add comments
*
* Revision 1.1 2003/03/30 21:18:07 mike
* Initial revision
*/
#include "m_apm_lc.h"
* compute rr = log(nn)
*
* input is assumed to not exceed the exponent range of a normal
* 'C' double ( |exponent| must be < 308)
*/
void M_log_solve_cubic(M_APM rr, int places, M_APM nn)
{
M_APM tmp0, tmp1, tmp2, tmp3, guess;
int ii, maxp, tolerance, local_precision;
guess = M_get_stack_var();
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
M_get_log_guess(guess, nn);
tolerance = -(places + 4);
maxp = places + 16;
local_precision = 18;
exp(X) - N
X = X - 2 * ------------
n+1 exp(X) + N
this is a cubically convergent algorithm
(each iteration yields 3X more digits)
*/
ii = 0;
while (TRUE)
{
m_apm_exp(tmp1, local_precision, guess);
m_apm_subtract(tmp3, tmp1, nn);
m_apm_add(tmp2, tmp1, nn);
m_apm_divide(tmp1, local_precision, tmp3, tmp2);
m_apm_multiply(tmp0, MM_Two, tmp1);
m_apm_subtract(tmp3, guess, tmp0);
if (ii != 0)
{
if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
break;
}
m_apm_round(guess, local_precision, tmp3);
local_precision *= 3;
if (local_precision > maxp)
local_precision = maxp;
ii = 1;
}
m_apm_round(rr, places, tmp3);
M_restore_stack(5);
}
* find log(N)
*
* if places < 360
* solve with cubically convergent algorithm above
*
* else
*
* let 'X' be 'close' to the solution (we use ~110 decimal places)
*
* let Y = N * exp(-X) - 1
*
* then
*
* log(N) = X + log(1 + Y)
*
* since 'Y' will be small, we can use the efficient log_near_1 algorithm.
*
*/
void M_log_basic_iteration(M_APM rr, int places, M_APM nn)
{
M_APM tmp0, tmp1, tmp2, tmpX;
if (places < 360)
{
M_log_solve_cubic(rr, places, nn);
}
else
{
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmpX = M_get_stack_var();
M_log_solve_cubic(tmpX, 110, nn);
m_apm_negate(tmp0, tmpX);
m_apm_exp(tmp1, (places + 8), tmp0);
m_apm_multiply(tmp2, tmp1, nn);
m_apm_subtract(tmp1, tmp2, MM_One);
M_log_near_1(tmp0, (places - 104), tmp1);
m_apm_add(tmp1, tmpX, tmp0);
m_apm_round(rr, places, tmp1);
M_restore_stack(4);
}
}