⛏️ index : haiku.git


/* 
 *  M_APM  -  mapm_lg2.c
 *
 *  Copyright (C) 2003 - 2007   Michael C. Ring
 *
 *  Permission to use, copy, and distribute this software and its
 *  documentation for any purpose with or without fee is hereby granted,
 *  provided that the above copyright notice appear in all copies and
 *  that both that copyright notice and this permission notice appear
 *  in supporting documentation.
 *
 *  Permission to modify the software is granted. Permission to distribute
 *  the modified code is granted. Modifications are to be distributed by
 *  using the file 'license.txt' as a template to modify the file header.
 *  'license.txt' is available in the official MAPM distribution.
 *
 *  This software is provided "as is" without express or implied warranty.
 */

/*
 *      $Id: mapm_lg2.c,v 1.9 2007/12/03 01:42:06 mike Exp $
 *
 *      This file contains the iterative function to compute the LOG
 *	This is an internal function to the library and is not intended
 *	to be called directly by the user.
 *
 *      $Log: mapm_lg2.c,v $
 *      Revision 1.9  2007/12/03 01:42:06  mike
 *      Update license
 *
 *      Revision 1.8  2003/05/12 17:52:15  mike
 *      rearrange some logic
 *
 *      Revision 1.7  2003/05/03 11:24:51  mike
 *      optimize decimal places
 *
 *      Revision 1.6  2003/05/01 21:58:27  mike
 *      remove math.h
 *
 *      Revision 1.5  2003/05/01 20:53:38  mike
 *      implement a new algorithm for log
 *
 *      Revision 1.4  2003/04/09 20:21:29  mike
 *      fix rare corner condition by intentionally inducing a
 *      10 ^ -5 error in the initial guess.
 *
 *      Revision 1.3  2003/03/31 22:13:15  mike
 *      call generic error handling function
 *
 *      Revision 1.2  2003/03/30 21:27:22  mike
 *      add comments
 *
 *      Revision 1.1  2003/03/30 21:18:07  mike
 *      Initial revision
 */

#include "m_apm_lc.h"

/****************************************************************************/

/*
 *      compute rr = log(nn)
 *
 *	input is assumed to not exceed the exponent range of a normal
 *	'C' double ( |exponent| must be < 308)
 */

/****************************************************************************/
void	M_log_solve_cubic(M_APM rr, int places, M_APM nn)
{
M_APM   tmp0, tmp1, tmp2, tmp3, guess;
int	ii, maxp, tolerance, local_precision;

guess = M_get_stack_var();
tmp0  = M_get_stack_var();
tmp1  = M_get_stack_var();
tmp2  = M_get_stack_var();
tmp3  = M_get_stack_var();

M_get_log_guess(guess, nn);

tolerance       = -(places + 4);
maxp            = places + 16;
local_precision = 18;

/*    Use the following iteration to solve for log :

                        exp(X) - N 
      X     =  X - 2 * ------------
       n+1              exp(X) + N 

   
      this is a cubically convergent algorithm 
      (each iteration yields 3X more digits)
*/

ii = 0;

while (TRUE)
  {
   m_apm_exp(tmp1, local_precision, guess);

   m_apm_subtract(tmp3, tmp1, nn);
   m_apm_add(tmp2, tmp1, nn);

   m_apm_divide(tmp1, local_precision, tmp3, tmp2);
   m_apm_multiply(tmp0, MM_Two, tmp1);
   m_apm_subtract(tmp3, guess, tmp0);

   if (ii != 0)
     {
      if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
        break;
     }

   m_apm_round(guess, local_precision, tmp3);

   local_precision *= 3;

   if (local_precision > maxp)
     local_precision = maxp;

   ii = 1;
  }

m_apm_round(rr, places, tmp3);
M_restore_stack(5);
}
/****************************************************************************/
/*
 *      find log(N)
 *
 *      if places < 360
 *         solve with cubically convergent algorithm above
 *
 *      else
 *
 *      let 'X' be 'close' to the solution   (we use ~110 decimal places)
 *
 *      let Y = N * exp(-X) - 1
 *
 *	then
 *
 *	log(N) = X + log(1 + Y)
 *
 *      since 'Y' will be small, we can use the efficient log_near_1 algorithm.
 *
 */
void	M_log_basic_iteration(M_APM rr, int places, M_APM nn)
{
M_APM   tmp0, tmp1, tmp2, tmpX;

if (places < 360)
  {
   M_log_solve_cubic(rr, places, nn);
  }
else
  {
   tmp0 = M_get_stack_var();
   tmp1 = M_get_stack_var();
   tmp2 = M_get_stack_var();
   tmpX = M_get_stack_var();
   
   M_log_solve_cubic(tmpX, 110, nn);
   
   m_apm_negate(tmp0, tmpX);
   m_apm_exp(tmp1, (places + 8), tmp0);
   m_apm_multiply(tmp2, tmp1, nn);
   m_apm_subtract(tmp1, tmp2, MM_One);
   
   M_log_near_1(tmp0, (places - 104), tmp1);
   
   m_apm_add(tmp1, tmpX, tmp0);
   m_apm_round(rr, places, tmp1);
   
   M_restore_stack(4);
  }
}
/****************************************************************************/