* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2001-2024, Intel Corporation
* Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
* Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "if_em.h"
#include <sys/sbuf.h>
#ifndef __HAIKU__
#include <machine/_inttypes.h>
#endif
#define em_mac_min e1000_82571
#define igb_mac_min e1000_82575
* Driver version:
*********************************************************************/
static const char em_driver_version[] = "7.7.8-fbsd";
static const char igb_driver_version[] = "2.5.28-fbsd";
* PCI Device ID Table
*
* Used by probe to select devices to load on
* Last field stores an index into e1000_strings
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
*********************************************************************/
static const pci_vendor_info_t em_vendor_info_array[] =
{
PVID(0x8086, E1000_DEV_ID_82540EM,
"Intel(R) Legacy PRO/1000 MT 82540EM"),
PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
"Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
PVID(0x8086, E1000_DEV_ID_82540EP,
"Intel(R) Legacy PRO/1000 MT 82540EP"),
PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
"Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
PVID(0x8086, E1000_DEV_ID_82540EP_LP,
"Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
PVID(0x8086, E1000_DEV_ID_82541EI,
"Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
PVID(0x8086, E1000_DEV_ID_82541ER,
"Intel(R) Legacy PRO/1000 82541ER"),
PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
"Intel(R) Legacy PRO/1000 MT 82541ER"),
PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
"Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
PVID(0x8086, E1000_DEV_ID_82541GI,
"Intel(R) Legacy PRO/1000 MT 82541GI"),
PVID(0x8086, E1000_DEV_ID_82541GI_LF,
"Intel(R) Legacy PRO/1000 GT 82541PI"),
PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
"Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
PVID(0x8086, E1000_DEV_ID_82542,
"Intel(R) Legacy PRO/1000 82542 (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
"Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
"Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
"Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
"Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
"Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
"Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
"Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
"Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
"Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
"Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
"Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
"Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
"Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
"Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
"Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
"Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
"Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
"Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
"Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
"Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82547EI,
"Intel(R) Legacy PRO/1000 CT 82547EI"),
PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
"Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
PVID(0x8086, E1000_DEV_ID_82547GI,
"Intel(R) Legacy PRO/1000 CT 82547GI"),
PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
"Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
"Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
"Intel(R) PRO/1000 PB 82571EB (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
"Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
"Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
"Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
"Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
"Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
"Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82572EI,
"Intel(R) PRO/1000 PT 82572EI (Copper)"),
PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
"Intel(R) PRO/1000 PT 82572EI (Copper)"),
PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
"Intel(R) PRO/1000 PF 82572EI (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
"Intel(R) PRO/1000 82572EI (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82573E,
"Intel(R) PRO/1000 82573E (Copper)"),
PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
"Intel(R) PRO/1000 82573E AMT (Copper)"),
PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
"Intel(R) 80003ES2LAN (Copper)"),
PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
"Intel(R) 80003ES2LAN (SERDES)"),
PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
"Intel(R) 80003ES2LAN (Dual Copper)"),
PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
"Intel(R) 80003ES2LAN (Dual SERDES)"),
PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
"Intel(R) 82566MM ICH8 AMT (Mobile)"),
PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
"Intel(R) 82567LM ICH9 AMT"),
PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
"Intel(R) 82566DM-2 ICH9 AMT"),
PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
"Intel(R) I218-LM LPTLP"),
PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
"Intel(R) I219-LM SPT-H(2)"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
"Intel(R) I219-V SPT-H(2)"),
PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
"Intel(R) I219-LM LBG(3)"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
"Intel(R) I219-LM SPT(4)"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
"Intel(R) I219-LM SPT(5)"),
PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
"Intel(R) I219-LM CNP(6)"),
PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
"Intel(R) I219-LM CNP(7)"),
PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
"Intel(R) I219-LM ICP(8)"),
PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
"Intel(R) I219-LM ICP(9)"),
PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
"Intel(R) I219-LM CMP(10)"),
PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
"Intel(R) I219-V CMP(10)"),
PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
"Intel(R) I219-LM CMP(11)"),
PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
"Intel(R) I219-V CMP(11)"),
PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
"Intel(R) I219-LM CMP(12)"),
PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
"Intel(R) I219-V CMP(12)"),
PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
"Intel(R) I219-LM TGP(13)"),
PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
"Intel(R) I219-V TGP(13)"),
PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
"Intel(R) I219-LM TGP(14)"),
PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
"Intel(R) I219-V GTP(14)"),
PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
"Intel(R) I219-LM TGP(15)"),
PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
"Intel(R) I219-V TGP(15)"),
PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
"Intel(R) I219-LM ADL(16)"),
PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
"Intel(R) I219-V ADL(16)"),
PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
"Intel(R) I219-LM ADL(17)"),
PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
"Intel(R) I219-V ADL(17)"),
PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
"Intel(R) I219-LM MTP(18)"),
PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
"Intel(R) I219-V MTP(18)"),
PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
"Intel(R) I219-LM ADL(19)"),
PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
"Intel(R) I219-V ADL(19)"),
PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
"Intel(R) I219-LM LNL(20)"),
PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
"Intel(R) I219-V LNL(20)"),
PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
"Intel(R) I219-LM LNL(21)"),
PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
"Intel(R) I219-V LNL(21)"),
PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
"Intel(R) I219-LM RPL(22)"),
PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
"Intel(R) I219-V RPL(22)"),
PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
"Intel(R) I219-LM RPL(23)"),
PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
"Intel(R) I219-V RPL(23)"),
PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
"Intel(R) I219-LM ARL(24)"),
PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
"Intel(R) I219-V ARL(24)"),
PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
"Intel(R) I219-LM PTP(25)"),
PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
"Intel(R) I219-V PTP(25)"),
PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
"Intel(R) I219-LM PTP(26)"),
PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
"Intel(R) I219-V PTP(26)"),
PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
"Intel(R) I219-LM PTP(27)"),
PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
"Intel(R) I219-V PTP(27)"),
PVID_END
};
static const pci_vendor_info_t igb_vendor_info_array[] =
{
PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
"Intel(R) PRO/1000 82575EB (Copper)"),
PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
"Intel(R) PRO/1000 82575EB (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
"Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
"Intel(R) PRO/1000 82576NS (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82576_FIBER,
"Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
PVID(0x8086, E1000_DEV_ID_82576_SERDES,
"Intel(R) PRO/1000 82576 (Dual SERDES)"),
PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
"Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
"Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
"Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
PVID(0x8086, E1000_DEV_ID_82576_VF,
"Intel(R) PRO/1000 82576 Virtual Function"),
PVID(0x8086, E1000_DEV_ID_82580_COPPER,
"Intel(R) I340 82580 (Copper)"),
PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
PVID(0x8086, E1000_DEV_ID_82580_SERDES,
"Intel(R) I340 82580 (SERDES)"),
PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
"Intel(R) I340-T2 82580 (Dual Copper)"),
PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
"Intel(R) I340-F4 82580 (Quad Fiber)"),
PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
"Intel(R) DH89XXCC (SERDES)"),
PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
"Intel(R) I347-AT4 DH89XXCC"),
PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
"Intel(R) DH89XXCC (Backplane)"),
PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
"Intel(R) I210 IT (Copper)"),
PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
"Intel(R) I210 Flashless (Copper)"),
PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
"Intel(R) I210 Flashless (SERDES)"),
PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
"Intel(R) I210 Flashless (SGMII)"),
PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
"Intel(R) I354 (1.0 GbE Backplane)"),
PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
"Intel(R) I354 (2.5 GbE Backplane)"),
PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
PVID_END
};
* Function prototypes
*********************************************************************/
static void *em_register(device_t);
static void *igb_register(device_t);
static int em_if_attach_pre(if_ctx_t);
static int em_if_attach_post(if_ctx_t);
static int em_if_detach(if_ctx_t);
static int em_if_shutdown(if_ctx_t);
static int em_if_suspend(if_ctx_t);
static int em_if_resume(if_ctx_t);
static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
int);
static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
int);
static void em_if_queues_free(if_ctx_t);
static uint64_t em_if_get_vf_counter(if_ctx_t, ift_counter);
static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
static void em_if_init(if_ctx_t);
static void em_if_stop(if_ctx_t);
static void em_if_media_status(if_ctx_t, struct ifmediareq *);
static int em_if_media_change(if_ctx_t);
static int em_if_mtu_set(if_ctx_t, uint32_t);
static void em_if_timer(if_ctx_t, uint16_t);
static void em_if_vlan_register(if_ctx_t, u16);
static void em_if_vlan_unregister(if_ctx_t, u16);
static void em_if_watchdog_reset(if_ctx_t);
static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
static void em_identify_hardware(if_ctx_t);
static int em_allocate_pci_resources(if_ctx_t);
static void em_free_pci_resources(if_ctx_t);
static void em_reset(if_ctx_t);
static int em_setup_interface(if_ctx_t);
static int em_setup_msix(if_ctx_t);
static void em_initialize_transmit_unit(if_ctx_t);
static void em_initialize_receive_unit(if_ctx_t);
static void em_if_intr_enable(if_ctx_t);
static void em_if_intr_disable(if_ctx_t);
static void igb_if_intr_enable(if_ctx_t);
static void igb_if_intr_disable(if_ctx_t);
static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
static void em_if_multi_set(if_ctx_t);
static void em_if_update_admin_status(if_ctx_t);
static void em_if_debug(if_ctx_t);
static void em_update_vf_stats_counters(struct e1000_softc *);
static void em_update_stats_counters(struct e1000_softc *);
static void em_add_hw_stats(struct e1000_softc *);
static int em_if_set_promisc(if_ctx_t, int);
static bool em_if_vlan_filter_capable(if_ctx_t);
static bool em_if_vlan_filter_used(if_ctx_t);
static void em_if_vlan_filter_enable(struct e1000_softc *);
static void em_if_vlan_filter_disable(struct e1000_softc *);
static void em_if_vlan_filter_write(struct e1000_softc *);
static void em_setup_vlan_hw_support(if_ctx_t ctx);
static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
static void em_print_nvm_info(struct e1000_softc *);
static void em_fw_version_locked(if_ctx_t);
static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
static void em_print_fw_version(struct e1000_softc *);
static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
static int em_get_rs(SYSCTL_HANDLER_ARGS);
static void em_print_debug_info(struct e1000_softc *);
static int em_is_valid_ether_addr(u8 *);
static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
struct tx_ring *, struct rx_ring *);
static bool em_automask_tso(if_ctx_t);
static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
const char *, struct em_int_delay_info *, int, int);
static void em_init_manageability(struct e1000_softc *);
static void em_release_manageability(struct e1000_softc *);
static void em_get_hw_control(struct e1000_softc *);
static void em_release_hw_control(struct e1000_softc *);
static void em_get_wakeup(if_ctx_t);
static void em_enable_wakeup(if_ctx_t);
static int em_enable_phy_wakeup(struct e1000_softc *);
static void em_disable_aspm(struct e1000_softc *);
int em_intr(void *);
static int em_if_msix_intr_assign(if_ctx_t, int);
static int em_msix_link(void *);
static void em_handle_link(void *);
static void em_enable_vectors_82574(if_ctx_t);
static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
static void em_if_led_func(if_ctx_t, int);
static int em_get_regs(SYSCTL_HANDLER_ARGS);
static void lem_smartspeed(struct e1000_softc *);
static void igb_configure_queues(struct e1000_softc *);
static void em_flush_desc_rings(struct e1000_softc *);
* FreeBSD Device Interface Entry Points
*********************************************************************/
static device_method_t em_methods[] = {
DEVMETHOD(device_register, em_register),
DEVMETHOD(device_probe, iflib_device_probe),
DEVMETHOD(device_attach, iflib_device_attach),
DEVMETHOD(device_detach, iflib_device_detach),
DEVMETHOD(device_shutdown, iflib_device_shutdown),
DEVMETHOD(device_suspend, iflib_device_suspend),
DEVMETHOD(device_resume, iflib_device_resume),
DEVMETHOD_END
};
static device_method_t igb_methods[] = {
DEVMETHOD(device_register, igb_register),
DEVMETHOD(device_probe, iflib_device_probe),
DEVMETHOD(device_attach, iflib_device_attach),
DEVMETHOD(device_detach, iflib_device_detach),
DEVMETHOD(device_shutdown, iflib_device_shutdown),
DEVMETHOD(device_suspend, iflib_device_suspend),
DEVMETHOD(device_resume, iflib_device_resume),
DEVMETHOD_END
};
static driver_t em_driver = {
"em", em_methods, sizeof(struct e1000_softc),
};
DRIVER_MODULE(em, pci, em_driver, 0, 0);
MODULE_DEPEND(em, pci, 1, 1, 1);
MODULE_DEPEND(em, ether, 1, 1, 1);
MODULE_DEPEND(em, iflib, 1, 1, 1);
IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
static driver_t igb_driver = {
"igb", igb_methods, sizeof(struct e1000_softc),
};
DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
MODULE_DEPEND(igb, pci, 1, 1, 1);
MODULE_DEPEND(igb, ether, 1, 1, 1);
MODULE_DEPEND(igb, iflib, 1, 1, 1);
IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
static device_method_t em_if_methods[] = {
DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
DEVMETHOD(ifdi_attach_post, em_if_attach_post),
DEVMETHOD(ifdi_detach, em_if_detach),
DEVMETHOD(ifdi_shutdown, em_if_shutdown),
DEVMETHOD(ifdi_suspend, em_if_suspend),
DEVMETHOD(ifdi_resume, em_if_resume),
DEVMETHOD(ifdi_init, em_if_init),
DEVMETHOD(ifdi_stop, em_if_stop),
DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
DEVMETHOD(ifdi_queues_free, em_if_queues_free),
DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
DEVMETHOD(ifdi_multi_set, em_if_multi_set),
DEVMETHOD(ifdi_media_status, em_if_media_status),
DEVMETHOD(ifdi_media_change, em_if_media_change),
DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
DEVMETHOD(ifdi_timer, em_if_timer),
DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
DEVMETHOD(ifdi_get_counter, em_if_get_counter),
DEVMETHOD(ifdi_led_func, em_if_led_func),
DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
DEVMETHOD(ifdi_debug, em_if_debug),
DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
DEVMETHOD_END
};
static driver_t em_if_driver = {
"em_if", em_if_methods, sizeof(struct e1000_softc)
};
static device_method_t igb_if_methods[] = {
DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
DEVMETHOD(ifdi_attach_post, em_if_attach_post),
DEVMETHOD(ifdi_detach, em_if_detach),
DEVMETHOD(ifdi_shutdown, em_if_shutdown),
DEVMETHOD(ifdi_suspend, em_if_suspend),
DEVMETHOD(ifdi_resume, em_if_resume),
DEVMETHOD(ifdi_init, em_if_init),
DEVMETHOD(ifdi_stop, em_if_stop),
DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
DEVMETHOD(ifdi_queues_free, em_if_queues_free),
DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
DEVMETHOD(ifdi_multi_set, em_if_multi_set),
DEVMETHOD(ifdi_media_status, em_if_media_status),
DEVMETHOD(ifdi_media_change, em_if_media_change),
DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
DEVMETHOD(ifdi_timer, em_if_timer),
DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
DEVMETHOD(ifdi_get_counter, em_if_get_counter),
DEVMETHOD(ifdi_led_func, em_if_led_func),
DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
DEVMETHOD(ifdi_debug, em_if_debug),
DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
DEVMETHOD_END
};
static driver_t igb_if_driver = {
"igb_if", igb_if_methods, sizeof(struct e1000_softc)
};
* Tunable default values.
*********************************************************************/
#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
#ifndef CSUM_TSO
#define CSUM_TSO 0
#endif
static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"EM driver parameters");
static int em_disable_crc_stripping = 0;
SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
&em_disable_crc_stripping, 0, "Disable CRC Stripping");
static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
&em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
&em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
&em_tx_abs_int_delay_dflt, 0,
"Default transmit interrupt delay limit in usecs");
SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
&em_rx_abs_int_delay_dflt, 0,
"Default receive interrupt delay limit in usecs");
static int em_smart_pwr_down = false;
SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
&em_smart_pwr_down,
0, "Set to true to leave smart power down enabled on newer adapters");
static bool em_unsupported_tso = false;
SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
&em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
static int em_debug_sbp = false;
SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
"Show bad packets in promiscuous mode");
static int eee_setting = 1;
SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
"Enable Energy Efficient Ethernet");
* AIM: Adaptive Interrupt Moderation
* which means that the interrupt rate is varied over time based on the
* traffic for that interrupt vector
*/
static int em_enable_aim = 1;
SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
** Tuneable Interrupt rate
*/
static int em_max_interrupt_rate = EM_INTS_DEFAULT;
SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
&em_max_interrupt_rate, 0, "Maximum interrupts per second");
static int global_quad_port_a = 0;
extern struct if_txrx igb_txrx;
extern struct if_txrx em_txrx;
extern struct if_txrx lem_txrx;
static struct if_shared_ctx em_sctx_init = {
.isc_magic = IFLIB_MAGIC,
.isc_q_align = PAGE_SIZE,
.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tx_maxsegsize = PAGE_SIZE,
.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
.isc_rx_maxsize = MJUM9BYTES,
.isc_rx_nsegments = 1,
.isc_rx_maxsegsize = MJUM9BYTES,
.isc_nfl = 1,
.isc_nrxqs = 1,
.isc_ntxqs = 1,
.isc_admin_intrcnt = 1,
.isc_vendor_info = em_vendor_info_array,
.isc_driver_version = em_driver_version,
.isc_driver = &em_if_driver,
.isc_flags =
IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
.isc_nrxd_min = {EM_MIN_RXD},
.isc_ntxd_min = {EM_MIN_TXD},
.isc_nrxd_max = {EM_MAX_RXD},
.isc_ntxd_max = {EM_MAX_TXD},
.isc_nrxd_default = {EM_DEFAULT_RXD},
.isc_ntxd_default = {EM_DEFAULT_TXD},
};
static struct if_shared_ctx igb_sctx_init = {
.isc_magic = IFLIB_MAGIC,
.isc_q_align = PAGE_SIZE,
.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tx_maxsegsize = PAGE_SIZE,
.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
.isc_rx_maxsize = MJUM9BYTES,
.isc_rx_nsegments = 1,
.isc_rx_maxsegsize = MJUM9BYTES,
.isc_nfl = 1,
.isc_nrxqs = 1,
.isc_ntxqs = 1,
.isc_admin_intrcnt = 1,
.isc_vendor_info = igb_vendor_info_array,
.isc_driver_version = igb_driver_version,
.isc_driver = &igb_if_driver,
.isc_flags =
IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
.isc_nrxd_min = {EM_MIN_RXD},
.isc_ntxd_min = {EM_MIN_TXD},
.isc_nrxd_max = {IGB_MAX_RXD},
.isc_ntxd_max = {IGB_MAX_TXD},
.isc_nrxd_default = {EM_DEFAULT_RXD},
.isc_ntxd_default = {EM_DEFAULT_TXD},
};
*
* Dump Registers
*
****************************************************************/
#define IGB_REGS_LEN 739
static int em_get_regs(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc = (struct e1000_softc *)arg1;
struct e1000_hw *hw = &sc->hw;
struct sbuf *sb;
u32 *regs_buff;
int rc;
regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
rc = sysctl_wire_old_buffer(req, 0);
MPASS(rc == 0);
if (rc != 0) {
free(regs_buff, M_DEVBUF);
return (rc);
}
sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
MPASS(sb != NULL);
if (sb == NULL) {
free(regs_buff, M_DEVBUF);
return (ENOMEM);
}
regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
sbuf_printf(sb, "General Registers\n");
sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
sbuf_printf(sb, "Interrupt Registers\n");
sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
sbuf_printf(sb, "RX Registers\n");
sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
sbuf_printf(sb, "TX Registers\n");
sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
free(regs_buff, M_DEVBUF);
#ifdef DUMP_DESCS
{
if_softc_ctx_t scctx = sc->shared;
struct rx_ring *rxr = &rx_que->rxr;
struct tx_ring *txr = &tx_que->txr;
int ntxd = scctx->isc_ntxd[0];
int nrxd = scctx->isc_nrxd[0];
int j;
for (j = 0; j < nrxd; j++) {
u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
PRIx64 " Error:%d Length:%d\n",
j, rxr->rx_base[j].read.buffer_addr, staterr, length);
}
for (j = 0; j < min(ntxd, 256); j++) {
unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
sbuf_printf(sb,
"\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
" eop: %d DD=%d\n",
j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
buf->eop != -1 ?
txr->tx_base[buf->eop].upper.fields.status &
E1000_TXD_STAT_DD : 0);
}
}
#endif
rc = sbuf_finish(sb);
sbuf_delete(sb);
return(rc);
}
static void *
em_register(device_t dev)
{
return (&em_sctx_init);
}
static void *
igb_register(device_t dev)
{
return (&igb_sctx_init);
}
static int
em_set_num_queues(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
int maxqueues;
switch (sc->hw.mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
maxqueues = 8;
break;
case e1000_i210:
case e1000_82575:
maxqueues = 4;
break;
case e1000_i211:
case e1000_82574:
maxqueues = 2;
break;
default:
maxqueues = 1;
break;
}
return (maxqueues);
}
#define LEM_CAPS \
IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
#define EM_CAPS \
IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
IFCAP_TSO6
#define IGB_CAPS \
IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
IFCAP_TSO6
* Device initialization routine
*
* The attach entry point is called when the driver is being loaded.
* This routine identifies the type of hardware, allocates all resources
* and initializes the hardware.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
em_if_attach_pre(if_ctx_t ctx)
{
struct e1000_softc *sc;
if_softc_ctx_t scctx;
device_t dev;
struct e1000_hw *hw;
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx_list;
int error = 0;
INIT_DEBUGOUT("em_if_attach_pre: begin");
dev = iflib_get_dev(ctx);
sc = iflib_get_softc(ctx);
sc->ctx = sc->osdep.ctx = ctx;
sc->dev = sc->osdep.dev = dev;
scctx = sc->shared = iflib_get_softc_ctx(ctx);
sc->media = iflib_get_media(ctx);
hw = &sc->hw;
em_identify_hardware(ctx);
ctx_list = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
CTLTYPE_INT | CTLFLAG_RW, sc, 0,
em_sysctl_nvm_info, "I", "NVM Information");
sc->enable_aim = em_enable_aim;
SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
CTLFLAG_RW, &sc->enable_aim, 0,
"Interrupt Moderation (1=normal, 2=lowlatency)");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
em_sysctl_print_fw_version, "A",
"Prints FW/NVM Versions");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
CTLTYPE_INT | CTLFLAG_RW, sc, 0,
em_sysctl_debug_info, "I", "Debug Information");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
em_set_flowcntl, "I", "Flow Control");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
em_get_regs, "A", "Dump Registers");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
em_get_rs, "I", "Dump RS indexes");
if (hw->mac.type >= e1000_i350) {
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
CTLTYPE_INT | CTLFLAG_RW, sc, 0,
igb_sysctl_dmac, "I", "DMA Coalesce");
}
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
"tso_tcp_flags_mask_first_segment",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
"TSO TCP flags mask for first segment");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
"tso_tcp_flags_mask_middle_segment",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
"TSO TCP flags mask for middle segment");
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
"tso_tcp_flags_mask_last_segment",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
"TSO TCP flags mask for last segment");
scctx->isc_tx_nsegments = EM_MAX_SCATTER;
scctx->isc_nrxqsets_max =
scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
if (bootverbose)
device_printf(dev, "attach_pre capping queues at %d\n",
scctx->isc_ntxqsets_max);
if (hw->mac.type >= igb_mac_min) {
scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
scctx->isc_txrx = &igb_txrx;
scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
CSUM_IP6_TCP | CSUM_IP6_UDP;
if (hw->mac.type != e1000_82575)
scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
** Some new devices, as with ixgbe, now may
** use a different BAR, so we need to keep
** track of which is used.
*/
scctx->isc_msix_bar = pci_msix_table_bar(dev);
} else if (hw->mac.type >= em_mac_min) {
scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
scctx->isc_txrx = &em_txrx;
scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
CSUM_IP6_TCP | CSUM_IP6_UDP;
scctx->isc_capenable &= ~IFCAP_TSO;
* Disable TSO on SPT due to errata that downclocks DMA
* performance
* i218-i219 Specification Update 1.5.4.5
*/
if (hw->mac.type == e1000_pch_spt)
scctx->isc_capenable &= ~IFCAP_TSO;
* We support MSI-X with 82574 only, but indicate to iflib(4)
* that it shall give MSI at least a try with other devices.
*/
if (hw->mac.type == e1000_82574) {
scctx->isc_msix_bar = pci_msix_table_bar(dev);
} else {
scctx->isc_msix_bar = -1;
scctx->isc_disable_msix = 1;
}
} else {
scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
scctx->isc_txrx = &lem_txrx;
scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
if (em_unsupported_tso)
scctx->isc_capabilities |= IFCAP_TSO6;
scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
CSUM_IP6_TCP | CSUM_IP6_UDP;
scctx->isc_capenable &= ~IFCAP_TSO;
if (hw->device_id == E1000_DEV_ID_82541ER ||
hw->device_id == E1000_DEV_ID_82541ER_LOM) {
scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
scctx->isc_capenable = scctx->isc_capabilities;
}
if (hw->mac.type == e1000_82542) {
scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
IFCAP_TSO | IFCAP_VLAN_HWTSO);
scctx->isc_capenable = scctx->isc_capabilities;
}
if (hw->mac.type < e1000_82544 ||
hw->mac.type == e1000_82547 ||
hw->mac.type == e1000_82547_rev_2) {
scctx->isc_capabilities &=
~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
scctx->isc_capenable = scctx->isc_capabilities;
}
if (hw->mac.type < e1000_82545){
scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
scctx->isc_capenable = scctx->isc_capabilities;
}
* "PCI/PCI-X SDM 4.0" page 33 (b):
* FDX requirement on these chips
*/
if (hw->mac.type == e1000_82547 ||
hw->mac.type == e1000_82547_rev_2)
scctx->isc_capenable &= ~(IFCAP_HWCSUM |
IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
scctx->isc_msix_bar = 0;
}
if (em_allocate_pci_resources(ctx)) {
device_printf(dev, "Allocation of PCI resources failed\n");
error = ENXIO;
goto err_pci;
}
** For ICH8 and family we need to
** map the flash memory, and this
** must happen after the MAC is
** identified
*/
if ((hw->mac.type == e1000_ich8lan) ||
(hw->mac.type == e1000_ich9lan) ||
(hw->mac.type == e1000_ich10lan) ||
(hw->mac.type == e1000_pchlan) ||
(hw->mac.type == e1000_pch2lan) ||
(hw->mac.type == e1000_pch_lpt)) {
int rid = EM_BAR_TYPE_FLASH;
sc->flash = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->flash == NULL) {
device_printf(dev, "Mapping of Flash failed\n");
error = ENXIO;
goto err_pci;
}
hw->flash_address = (u8 *)sc->flash;
sc->osdep.flash_bus_space_tag =
rman_get_bustag(sc->flash);
sc->osdep.flash_bus_space_handle =
rman_get_bushandle(sc->flash);
}
** In the new SPT device flash is not a
** separate BAR, rather it is also in BAR0,
** so use the same tag and an offset handle for the
** FLASH read/write macros in the shared code.
*/
else if (hw->mac.type >= e1000_pch_spt) {
sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
sc->osdep.flash_bus_space_handle =
sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
}
error = e1000_setup_init_funcs(hw, true);
if (error) {
device_printf(dev, "Setup of Shared code failed, error %d\n",
error);
error = ENXIO;
goto err_pci;
}
em_setup_msix(ctx);
e1000_get_bus_info(hw);
if (hw->mac.type < igb_mac_min) {
em_add_int_delay_sysctl(sc, "rx_int_delay",
"receive interrupt delay in usecs", &sc->rx_int_delay,
E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
em_add_int_delay_sysctl(sc, "tx_int_delay",
"transmit interrupt delay in usecs", &sc->tx_int_delay,
E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
}
if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
"receive interrupt delay limit in usecs",
&sc->rx_abs_int_delay,
E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
"transmit interrupt delay limit in usecs",
&sc->tx_abs_int_delay,
E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
}
hw->mac.autoneg = DO_AUTO_NEG;
hw->phy.autoneg_wait_to_complete = false;
hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
if (hw->mac.type < em_mac_min) {
e1000_init_script_state_82541(hw, true);
e1000_set_tbi_compatibility_82543(hw, true);
}
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
hw->phy.disable_polarity_correction = false;
hw->phy.ms_type = EM_MASTER_SLAVE;
}
* Set the frame limits assuming
* standard ethernet sized frames.
*/
scctx->isc_max_frame_size = hw->mac.max_frame_size =
ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
* This controls when hardware reports transmit completion
* status.
*/
hw->mac.report_tx_early = 1;
sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
if (sc->mta == NULL) {
device_printf(dev,
"Can not allocate multicast setup array\n");
error = ENOMEM;
goto err_late;
}
sc->tso_automasked = 0;
if (e1000_check_reset_block(hw))
device_printf(dev,
"PHY reset is blocked due to SOL/IDER session.\n");
if (hw->mac.type < igb_mac_min)
hw->dev_spec.ich8lan.eee_disable = eee_setting;
else
hw->dev_spec._82575.eee_disable = eee_setting;
SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
** Start from a known state, this is
** important in reading the nvm and
** mac from that.
*/
e1000_reset_hw(hw);
if (e1000_validate_nvm_checksum(hw) < 0) {
** Some PCI-E parts fail the first check due to
** the link being in sleep state, call it again,
** if it fails a second time its a real issue.
*/
if (e1000_validate_nvm_checksum(hw) < 0) {
device_printf(dev,
"The EEPROM Checksum Is Not Valid\n");
error = EIO;
goto err_late;
}
}
if (e1000_read_mac_addr(hw) < 0) {
device_printf(dev,
"EEPROM read error while reading MAC address\n");
error = EIO;
goto err_late;
}
if (!em_is_valid_ether_addr(hw->mac.addr)) {
#ifndef __HAIKU__
if (sc->vf_ifp) {
ether_gen_addr(iflib_get_ifp(ctx),
(struct ether_addr *)hw->mac.addr);
} else {
#else
{
#endif
device_printf(dev, "Invalid MAC address\n");
error = EIO;
goto err_late;
}
}
em_fw_version_locked(ctx);
em_print_fw_version(sc);
* Get Wake-on-Lan and Management info for later use
*/
em_get_wakeup(ctx);
scctx->isc_capenable &= ~IFCAP_WOL;
if (sc->wol != 0)
scctx->isc_capenable |= IFCAP_WOL_MAGIC;
iflib_set_mac(ctx, hw->mac.addr);
return (0);
err_late:
em_release_hw_control(sc);
err_pci:
em_free_pci_resources(ctx);
free(sc->mta, M_DEVBUF);
return (error);
}
static int
em_if_attach_post(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
int error = 0;
error = em_setup_interface(ctx);
if (error != 0) {
device_printf(sc->dev, "Interface setup failed: %d\n", error);
goto err_late;
}
em_reset(ctx);
if (sc->vf_ifp)
sc->ustats.vf_stats = (struct e1000_vf_stats){};
else
sc->ustats.stats = (struct e1000_hw_stats){};
em_update_stats_counters(sc);
hw->mac.get_link_status = 1;
em_if_update_admin_status(ctx);
em_add_hw_stats(sc);
if (sc->has_manage && !sc->has_amt)
em_get_hw_control(sc);
INIT_DEBUGOUT("em_if_attach_post: end");
return (0);
err_late:
* Upon em_if_attach_post() error, iflib calls em_if_detach() to
* free resources
*/
return (error);
}
* Device removal routine
*
* The detach entry point is called when the driver is being removed.
* This routine stops the adapter and deallocates all the resources
* that were allocated for driver operation.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
em_if_detach(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
INIT_DEBUGOUT("em_if_detach: begin");
e1000_phy_hw_reset(&sc->hw);
em_release_manageability(sc);
em_release_hw_control(sc);
em_free_pci_resources(ctx);
free(sc->mta, M_DEVBUF);
sc->mta = NULL;
return (0);
}
*
* Shutdown entry point
*
**********************************************************************/
static int
em_if_shutdown(if_ctx_t ctx)
{
return em_if_suspend(ctx);
}
* Suspend/resume device methods.
*/
static int
em_if_suspend(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
em_release_manageability(sc);
em_release_hw_control(sc);
em_enable_wakeup(ctx);
return (0);
}
static int
em_if_resume(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if (sc->hw.mac.type == e1000_pch2lan)
e1000_resume_workarounds_pchlan(&sc->hw);
em_if_init(ctx);
em_init_manageability(sc);
return(0);
}
static int
em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
{
int max_frame_size;
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
switch (sc->hw.mac.type) {
case e1000_82571:
case e1000_82572:
case e1000_ich9lan:
case e1000_ich10lan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_ptp:
case e1000_82574:
case e1000_82583:
case e1000_80003es2lan:
max_frame_size = 9234;
break;
case e1000_pchlan:
max_frame_size = 4096;
break;
case e1000_82542:
case e1000_ich8lan:
max_frame_size = ETHER_MAX_LEN;
break;
default:
if (sc->hw.mac.type >= igb_mac_min)
max_frame_size = 9234;
else
max_frame_size = MAX_JUMBO_FRAME_SIZE;
}
if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
return (EINVAL);
}
scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
return (0);
}
* Init entry point
*
* This routine is used in two ways. It is used by the stack as
* init entry point in network interface structure. It is also used
* by the driver as a hw/sw initialization routine to get to a
* consistent state.
*
**********************************************************************/
static void
em_if_init(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = sc->shared;
if_t ifp = iflib_get_ifp(ctx);
struct em_tx_queue *tx_que;
int i;
INIT_DEBUGOUT("em_if_init: begin");
bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
* With the 82571 adapter, RAR[0] may be overwritten
* when the other port is reset, we make a duplicate
* in RAR[14] for that eventuality, this assures
* the interface continues to function.
*/
if (sc->hw.mac.type == e1000_82571) {
e1000_set_laa_state_82571(&sc->hw, true);
e1000_rar_set(&sc->hw, sc->hw.mac.addr,
E1000_RAR_ENTRIES - 1);
}
em_reset(ctx);
em_if_update_admin_status(ctx);
for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
i++, tx_que++) {
struct tx_ring *txr = &tx_que->txr;
txr->tx_rs_cidx = txr->tx_rs_pidx;
* the ring, rather than the start, so that we avoid an
* off-by-one error when calculating how many descriptors are
* done in the credits_update function.
*/
txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
}
E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
if (sc->hw.mac.type >= igb_mac_min && !sc->vf_ifp)
e1000_rx_fifo_flush_base(&sc->hw);
em_init_manageability(sc);
em_initialize_transmit_unit(ctx);
em_if_multi_set(ctx);
sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
em_initialize_receive_unit(ctx);
em_setup_vlan_hw_support(ctx);
em_if_set_promisc(ctx, if_getflags(ifp));
if (sc->hw.mac.ops.clear_hw_cntrs != NULL)
sc->hw.mac.ops.clear_hw_cntrs(&sc->hw);
if (sc->hw.mac.type == e1000_82574) {
int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
tmp |= E1000_CTRL_EXT_PBA_CLR;
E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
} else if (sc->intr_type == IFLIB_INTR_MSIX) {
igb_configure_queues(sc);
}
E1000_READ_REG(&sc->hw, E1000_ICR);
E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
if (sc->has_manage && sc->has_amt)
em_get_hw_control(sc);
if (sc->hw.mac.type >= igb_mac_min &&
sc->hw.phy.media_type == e1000_media_type_copper) {
if (sc->hw.mac.type == e1000_i354)
e1000_set_eee_i354(&sc->hw, true, true);
else
e1000_set_eee_i350(&sc->hw, true, true);
}
}
enum itr_latency_target {
itr_latency_disabled = 0,
itr_latency_lowest = 1,
itr_latency_low = 2,
itr_latency_bulk = 3
};
*
* Helper to calculate next (E)ITR value for AIM
*
*********************************************************************/
static void
em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
struct tx_ring *txr, struct rx_ring *rxr)
{
struct e1000_hw *hw = &sc->hw;
unsigned long bytes, bytes_per_packet, packets;
unsigned long rxbytes, rxpackets, txbytes, txpackets;
u32 newitr;
u8 nextlatency;
rxbytes = atomic_load_long(&rxr->rx_bytes);
txbytes = atomic_load_long(&txr->tx_bytes);
if (txbytes == 0 && rxbytes == 0)
return;
newitr = 0;
if (sc->enable_aim) {
nextlatency = rxr->rx_nextlatency;
if (sc->link_speed != 1000) {
newitr = EM_INTS_4K;
goto em_set_next_itr;
}
if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
newitr = em_max_interrupt_rate;
sc->enable_aim = 0;
goto em_set_next_itr;
}
bytes = bytes_per_packet = 0;
txpackets = atomic_load_long(&txr->tx_packets);
if (txpackets != 0) {
bytes = txbytes;
bytes_per_packet = txbytes / txpackets;
packets = txpackets;
}
rxpackets = atomic_load_long(&rxr->rx_packets);
if (rxpackets != 0) {
bytes = lmax(bytes, rxbytes);
bytes_per_packet =
lmax(bytes_per_packet, rxbytes / rxpackets);
packets = lmax(packets, rxpackets);
}
switch (nextlatency) {
case itr_latency_disabled:
nextlatency = itr_latency_low;
break;
case itr_latency_lowest:
if (bytes_per_packet > 8000)
nextlatency = itr_latency_bulk;
else if ((packets < 5) && (bytes > 512))
nextlatency = itr_latency_low;
break;
case itr_latency_low:
if (bytes > 10000) {
if (bytes_per_packet > 8000)
nextlatency = itr_latency_bulk;
else if ((packets < 10) ||
(bytes_per_packet > 1200))
nextlatency = itr_latency_bulk;
else if (packets > 35)
nextlatency = itr_latency_lowest;
} else if (bytes_per_packet > 2000) {
nextlatency = itr_latency_bulk;
} else if (packets < 3 && bytes < 512) {
nextlatency = itr_latency_lowest;
}
break;
case itr_latency_bulk:
if (bytes > 25000) {
if (packets > 35)
nextlatency = itr_latency_low;
} else if (bytes < 1500)
nextlatency = itr_latency_low;
break;
default:
nextlatency = itr_latency_low;
device_printf(sc->dev,
"Unexpected newitr transition %d\n", nextlatency);
break;
}
if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
nextlatency = itr_latency_low;
rxr->rx_nextlatency = nextlatency;
} else {
nextlatency = itr_latency_disabled;
rxr->rx_nextlatency = nextlatency;
}
switch(nextlatency) {
case itr_latency_lowest:
newitr = EM_INTS_70K;
break;
case itr_latency_low:
newitr = EM_INTS_20K;
break;
case itr_latency_bulk:
newitr = EM_INTS_4K;
break;
case itr_latency_disabled:
default:
newitr = em_max_interrupt_rate;
break;
}
em_set_next_itr:
if (hw->mac.type >= igb_mac_min) {
newitr = IGB_INTS_TO_EITR(newitr);
if (hw->mac.type == e1000_82575)
newitr |= newitr << 16;
else
newitr |= E1000_EITR_CNT_IGNR;
if (newitr != que->itr_setting) {
que->itr_setting = newitr;
E1000_WRITE_REG(hw, E1000_EITR(que->msix),
que->itr_setting);
}
} else {
newitr = EM_INTS_TO_ITR(newitr);
if (newitr != que->itr_setting) {
que->itr_setting = newitr;
if (hw->mac.type == e1000_82574 && que->msix) {
E1000_WRITE_REG(hw,
E1000_EITR_82574(que->msix),
que->itr_setting);
} else {
E1000_WRITE_REG(hw, E1000_ITR,
que->itr_setting);
}
}
}
}
*
* Fast Legacy/MSI Combined Interrupt Service routine
*
*********************************************************************/
int
em_intr(void *arg)
{
struct e1000_softc *sc = arg;
struct e1000_hw *hw = &sc->hw;
struct em_rx_queue *que = &sc->rx_queues[0];
struct tx_ring *txr = &sc->tx_queues[0].txr;
struct rx_ring *rxr = &que->rxr;
if_ctx_t ctx = sc->ctx;
u32 reg_icr;
reg_icr = E1000_READ_REG(hw, E1000_ICR);
if (reg_icr == 0xffffffff)
return FILTER_STRAY;
if (reg_icr == 0x0)
return FILTER_STRAY;
* Starting with the 82571 chip, bit 31 should be used to
* determine whether the interrupt belongs to us.
*/
if (hw->mac.type >= e1000_82571 &&
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
return FILTER_STRAY;
* Only MSI-X interrupts have one-shot behavior by taking advantage
* of the EIAC register. Thus, explicitly disable interrupts. This
* also works around the MSI message reordering errata on certain
* systems.
*/
IFDI_INTR_DISABLE(ctx);
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
em_handle_link(ctx);
if (reg_icr & E1000_ICR_RXO)
sc->rx_overruns++;
if (hw->mac.type >= e1000_82540)
em_newitr(sc, que, txr, rxr);
txr->tx_bytes = 0;
txr->tx_packets = 0;
rxr->rx_bytes = 0;
rxr->rx_packets = 0;
return (FILTER_SCHEDULE_THREAD);
}
static int
em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
return (0);
}
static int
em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_tx_queue *txq = &sc->tx_queues[txqid];
E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
return (0);
}
static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
return (0);
}
static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_tx_queue *txq = &sc->tx_queues[txqid];
E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
return (0);
}
*
* MSI-X RX Interrupt Service routine
*
**********************************************************************/
static int
em_msix_que(void *arg)
{
struct em_rx_queue *que = arg;
struct e1000_softc *sc = que->sc;
struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
struct rx_ring *rxr = &que->rxr;
++que->irqs;
em_newitr(sc, que, txr, rxr);
txr->tx_bytes = 0;
txr->tx_packets = 0;
rxr->rx_bytes = 0;
rxr->rx_packets = 0;
return (FILTER_SCHEDULE_THREAD);
}
*
* MSI-X Link Fast Interrupt Service routine
*
**********************************************************************/
static int
em_msix_link(void *arg)
{
struct e1000_softc *sc = arg;
u32 reg_icr;
++sc->link_irq;
MPASS(sc->hw.back != NULL);
reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
if (reg_icr & E1000_ICR_RXO)
sc->rx_overruns++;
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
em_handle_link(sc->ctx);
if (sc->hw.mac.type >= igb_mac_min) {
E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
} else if (sc->hw.mac.type == e1000_82574) {
E1000_WRITE_REG(&sc->hw, E1000_IMS,
E1000_IMS_LSC | E1000_IMS_OTHER);
* Because we must read the ICR for this interrupt it may
* clear other causes using autoclear, for this reason we
* simply create a soft interrupt for all these vectors.
*/
if (reg_icr)
E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
} else
E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
return (FILTER_HANDLED);
}
static void
em_handle_link(void *context)
{
if_ctx_t ctx = context;
struct e1000_softc *sc = iflib_get_softc(ctx);
sc->hw.mac.get_link_status = 1;
iflib_admin_intr_deferred(ctx);
}
*
* Media Ioctl callback
*
* This routine is called whenever the user queries the status of
* the interface using ifconfig.
*
**********************************************************************/
static void
em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
u_char fiber_type = IFM_1000_SX;
INIT_DEBUGOUT("em_if_media_status: begin");
iflib_admin_intr_deferred(ctx);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!sc->link_active) {
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
(sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
if (sc->hw.mac.type == e1000_82545)
fiber_type = IFM_1000_LX;
ifmr->ifm_active |= fiber_type | IFM_FDX;
} else {
switch (sc->link_speed) {
case 10:
ifmr->ifm_active |= IFM_10_T;
break;
case 100:
ifmr->ifm_active |= IFM_100_TX;
break;
case 1000:
ifmr->ifm_active |= IFM_1000_T;
break;
}
if (sc->link_duplex == FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
}
}
*
* Media Ioctl callback
*
* This routine is called when the user changes speed/duplex using
* media/mediopt option with ifconfig.
*
**********************************************************************/
static int
em_if_media_change(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct ifmedia *ifm = iflib_get_media(ctx);
INIT_DEBUGOUT("em_if_media_change: begin");
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
sc->hw.mac.autoneg = DO_AUTO_NEG;
sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
break;
case IFM_1000_LX:
case IFM_1000_SX:
case IFM_1000_T:
sc->hw.mac.autoneg = DO_AUTO_NEG;
sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case IFM_100_TX:
sc->hw.mac.autoneg = false;
sc->hw.phy.autoneg_advertised = 0;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
else
sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
break;
case IFM_10_T:
sc->hw.mac.autoneg = false;
sc->hw.phy.autoneg_advertised = 0;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
else
sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
break;
default:
device_printf(sc->dev, "Unsupported media type\n");
}
em_if_init(ctx);
return (0);
}
static int
em_if_set_promisc(if_ctx_t ctx, int flags)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
u32 reg_rctl;
int mcnt = 0;
reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
if (flags & IFF_ALLMULTI)
mcnt = MAX_NUM_MULTICAST_ADDRESSES;
else
mcnt = min(if_llmaddr_count(ifp),
MAX_NUM_MULTICAST_ADDRESSES);
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
reg_rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
if (flags & IFF_PROMISC) {
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
em_if_vlan_filter_disable(sc);
if (em_debug_sbp)
reg_rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
} else {
if (flags & IFF_ALLMULTI) {
reg_rctl |= E1000_RCTL_MPE;
reg_rctl &= ~E1000_RCTL_UPE;
E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
}
if (em_if_vlan_filter_used(ctx))
em_if_vlan_filter_enable(sc);
}
return (0);
}
static u_int
em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
{
u8 *mta = arg;
if (idx == MAX_NUM_MULTICAST_ADDRESSES)
return (0);
bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
return (1);
}
* Multicast Update
*
* This routine is called whenever multicast address list is updated.
*
**********************************************************************/
static void
em_if_multi_set(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
u8 *mta;
u32 reg_rctl = 0;
int mcnt = 0;
IOCTL_DEBUGOUT("em_set_multi: begin");
mta = sc->mta;
bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
if (sc->hw.mac.type == e1000_82542 &&
sc->hw.revision_id == E1000_REVISION_2) {
reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_clear_mwi(&sc->hw);
reg_rctl |= E1000_RCTL_RST;
E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
msec_delay(5);
}
mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
if (if_getflags(ifp) & IFF_PROMISC)
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
if_getflags(ifp) & IFF_ALLMULTI) {
reg_rctl |= E1000_RCTL_MPE;
reg_rctl &= ~E1000_RCTL_UPE;
} else
reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
if (sc->hw.mac.type == e1000_82542 &&
sc->hw.revision_id == E1000_REVISION_2) {
reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
reg_rctl &= ~E1000_RCTL_RST;
E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
msec_delay(5);
if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_set_mwi(&sc->hw);
}
}
* Timer routine
*
* This routine schedules em_if_update_admin_status() to check for
* link status and to gather statistics as well as to perform some
* controller-specific hardware patting.
*
**********************************************************************/
static void
em_if_timer(if_ctx_t ctx, uint16_t qid)
{
if (qid != 0)
return;
iflib_admin_intr_deferred(ctx);
}
static void
em_if_update_admin_status(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
device_t dev = iflib_get_dev(ctx);
u32 link_check, thstat, ctrl;
bool automasked = false;
link_check = thstat = ctrl = 0;
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (hw->mac.get_link_status) {
if (hw->mac.type == e1000_pch_spt)
msec_delay(50);
e1000_check_for_link(hw);
link_check = !hw->mac.get_link_status;
if (link_check)
e1000_cfg_on_link_up(hw);
} else {
link_check = true;
}
break;
case e1000_media_type_fiber:
e1000_check_for_link(hw);
link_check =
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_check = hw->mac.serdes_has_link;
break;
case e1000_media_type_unknown:
e1000_check_for_link(hw);
link_check = !hw->mac.get_link_status;
default:
break;
}
if (hw->mac.type == e1000_i350) {
thstat = E1000_READ_REG(hw, E1000_THSTAT);
ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
}
if (link_check && (sc->link_active == 0)) {
e1000_get_speed_and_duplex(hw, &sc->link_speed,
&sc->link_duplex);
if ((sc->link_speed != SPEED_1000) &&
((hw->mac.type == e1000_82571) ||
(hw->mac.type == e1000_82572))) {
int tarc0;
tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
tarc0 &= ~TARC_SPEED_MODE_BIT;
E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
}
if (bootverbose)
device_printf(dev, "Link is up %d Mbps %s\n",
sc->link_speed,
((sc->link_duplex == FULL_DUPLEX) ?
"Full Duplex" : "Half Duplex"));
sc->link_active = 1;
sc->smartspeed = 0;
if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
E1000_CTRL_EXT_LINK_MODE_GMII &&
(thstat & E1000_THSTAT_LINK_THROTTLE))
device_printf(dev, "Link: thermal downshift\n");
if (((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) &&
(hw->phy.id == I210_I_PHY_ID))
msec_delay(I210_LINK_DELAY);
if (hw->dev_spec._82575.media_changed &&
hw->mac.type >= igb_mac_min) {
hw->dev_spec._82575.media_changed = false;
sc->flags |= IGB_MEDIA_RESET;
em_reset(ctx);
}
if (hw->mac.type < igb_mac_min)
automasked = em_automask_tso(ctx);
if (!automasked)
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Mbps(sc->link_speed));
} else if (!link_check && (sc->link_active == 1)) {
sc->link_speed = 0;
sc->link_duplex = 0;
sc->link_active = 0;
iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
}
em_update_stats_counters(sc);
if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
e1000_rar_set(hw, hw->mac.addr, 0);
if (hw->mac.type < em_mac_min)
lem_smartspeed(sc);
}
static void
em_if_watchdog_reset(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
* Just count the event; iflib(4) will already trigger a
* sufficient reset of the controller.
*/
sc->watchdog_events++;
}
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
static void
em_if_stop(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
INIT_DEBUGOUT("em_if_stop: begin");
if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
em_flush_desc_rings(sc);
e1000_reset_hw(&sc->hw);
if (sc->hw.mac.type >= e1000_82544 && !sc->vf_ifp)
E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
e1000_led_off(&sc->hw);
e1000_cleanup_led(&sc->hw);
}
*
* Determine hardware revision.
*
**********************************************************************/
static void
em_identify_hardware(if_ctx_t ctx)
{
device_t dev = iflib_get_dev(ctx);
struct e1000_softc *sc = iflib_get_softc(ctx);
sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
sc->hw.vendor_id = pci_get_vendor(dev);
sc->hw.device_id = pci_get_device(dev);
sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
if (e1000_set_mac_type(&sc->hw)) {
device_printf(dev, "Setup init failure\n");
return;
}
if ((sc->hw.mac.type == e1000_vfadapt) ||
(sc->hw.mac.type == e1000_vfadapt_i350))
sc->vf_ifp = 1;
else
sc->vf_ifp = 0;
}
static int
em_allocate_pci_resources(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
device_t dev = iflib_get_dev(ctx);
int rid, val;
rid = PCIR_BAR(0);
sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->memory == NULL) {
device_printf(dev,
"Unable to allocate bus resource: memory\n");
return (ENXIO);
}
sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
#ifdef INVARIANTS
sc->osdep.mem_bus_space_size = rman_get_size(sc->memory);
#endif
sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
val = pci_read_config(dev, rid, 4);
if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
break;
}
rid += 4;
if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
rid += 4;
}
if (rid >= PCIR_CIS) {
device_printf(dev, "Unable to locate IO BAR\n");
return (ENXIO);
}
sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&rid, RF_ACTIVE);
if (sc->ioport == NULL) {
device_printf(dev,
"Unable to allocate bus resource: ioport\n");
return (ENXIO);
}
sc->hw.io_base = 0;
sc->osdep.io_bus_space_tag =
rman_get_bustag(sc->ioport);
sc->osdep.io_bus_space_handle =
rman_get_bushandle(sc->ioport);
}
sc->hw.back = &sc->osdep;
return (0);
}
*
* Set up the MSI-X Interrupt handlers
*
**********************************************************************/
static int
em_if_msix_intr_assign(if_ctx_t ctx, int msix)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_rx_queue *rx_que = sc->rx_queues;
struct em_tx_queue *tx_que = sc->tx_queues;
int error, rid, i, vector = 0, rx_vectors;
char buf[16];
for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
rid = vector + 1;
snprintf(buf, sizeof(buf), "rxq%d", i);
error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
if (error) {
device_printf(iflib_get_dev(ctx),
"Failed to allocate que int %d err: %d",
i, error);
sc->rx_num_queues = i + 1;
goto fail;
}
rx_que->msix = vector;
* Set the bit to enable interrupt
* in E1000_IMS -- bits 20 and 21
* are for RX0 and RX1, note this has
* NOTHING to do with the MSI-X vector
*/
if (sc->hw.mac.type == e1000_82574) {
rx_que->eims = 1 << (20 + i);
sc->ims |= rx_que->eims;
sc->ivars |= (8 | rx_que->msix) << (i * 4);
} else if (sc->hw.mac.type == e1000_82575)
rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
else
rx_que->eims = 1 << vector;
}
rx_vectors = vector;
vector = 0;
for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
snprintf(buf, sizeof(buf), "txq%d", i);
tx_que = &sc->tx_queues[i];
iflib_softirq_alloc_generic(ctx,
&sc->rx_queues[i % sc->rx_num_queues].que_irq,
IFLIB_INTR_TX, tx_que, tx_que->me, buf);
tx_que->msix = (vector % sc->rx_num_queues);
* Set the bit to enable interrupt
* in E1000_IMS -- bits 22 and 23
* are for TX0 and TX1, note this has
* NOTHING to do with the MSI-X vector
*/
if (sc->hw.mac.type == e1000_82574) {
tx_que->eims = 1 << (22 + i);
sc->ims |= tx_que->eims;
sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
} else if (sc->hw.mac.type == e1000_82575) {
tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
} else {
tx_que->eims = 1 << i;
}
}
rid = rx_vectors + 1;
error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
em_msix_link, sc, 0, "aq");
if (error) {
device_printf(iflib_get_dev(ctx),
"Failed to register admin handler");
goto fail;
}
sc->linkvec = rx_vectors;
if (sc->hw.mac.type < igb_mac_min) {
sc->ivars |= (8 | rx_vectors) << 16;
sc->ivars |= 0x80000000;
sc->ims |= E1000_IMS_OTHER;
}
return (0);
fail:
iflib_irq_free(ctx, &sc->irq);
rx_que = sc->rx_queues;
for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
iflib_irq_free(ctx, &rx_que->que_irq);
return (error);
}
static void
igb_configure_queues(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
struct em_rx_queue *rx_que;
struct em_tx_queue *tx_que;
u32 tmp, ivar = 0, newitr = 0;
if (hw->mac.type != e1000_82575)
E1000_WRITE_REG(hw, E1000_GPIE,
E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
E1000_GPIE_PBA | E1000_GPIE_NSICR);
switch (hw->mac.type) {
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
case e1000_vfadapt:
case e1000_vfadapt_i350:
for (int i = 0; i < sc->rx_num_queues; i++) {
u32 index = i >> 1;
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
rx_que = &sc->rx_queues[i];
if (i & 1) {
ivar &= 0xFF00FFFF;
ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
16;
} else {
ivar &= 0xFFFFFF00;
ivar |= rx_que->msix | E1000_IVAR_VALID;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
}
for (int i = 0; i < sc->tx_num_queues; i++) {
u32 index = i >> 1;
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
tx_que = &sc->tx_queues[i];
if (i & 1) {
ivar &= 0x00FFFFFF;
ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
24;
} else {
ivar &= 0xFFFF00FF;
ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
8;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
sc->que_mask |= tx_que->eims;
}
ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
sc->link_mask = 1 << sc->linkvec;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
break;
case e1000_82576:
for (int i = 0; i < sc->rx_num_queues; i++) {
u32 index = i & 0x7;
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
rx_que = &sc->rx_queues[i];
if (i < 8) {
ivar &= 0xFFFFFF00;
ivar |= rx_que->msix | E1000_IVAR_VALID;
} else {
ivar &= 0xFF00FFFF;
ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
16;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
sc->que_mask |= rx_que->eims;
}
for (int i = 0; i < sc->tx_num_queues; i++) {
u32 index = i & 0x7;
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
tx_que = &sc->tx_queues[i];
if (i < 8) {
ivar &= 0xFFFF00FF;
ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
8;
} else {
ivar &= 0x00FFFFFF;
ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
24;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
sc->que_mask |= tx_que->eims;
}
ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
sc->link_mask = 1 << sc->linkvec;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
break;
case e1000_82575:
tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
tmp |= E1000_CTRL_EXT_PBA_CLR;
tmp |= E1000_CTRL_EXT_EIAME;
tmp |= E1000_CTRL_EXT_IRCA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
for (int i = 0; i < sc->rx_num_queues; i++) {
rx_que = &sc->rx_queues[i];
tmp = E1000_EICR_RX_QUEUE0 << i;
tmp |= E1000_EICR_TX_QUEUE0 << i;
rx_que->eims = tmp;
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
rx_que->eims);
sc->que_mask |= rx_que->eims;
}
E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
E1000_EIMS_OTHER);
sc->link_mask |= E1000_EIMS_OTHER;
default:
break;
}
if (em_max_interrupt_rate > 0) {
newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
if (hw->mac.type == e1000_82575)
newitr |= newitr << 16;
else
newitr |= E1000_EITR_CNT_IGNR;
for (int i = 0; i < sc->rx_num_queues; i++) {
rx_que = &sc->rx_queues[i];
E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
}
}
return;
}
static void
em_free_pci_resources(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_rx_queue *que = sc->rx_queues;
device_t dev = iflib_get_dev(ctx);
if (sc->intr_type == IFLIB_INTR_MSIX)
iflib_irq_free(ctx, &sc->irq);
if (que != NULL) {
for (int i = 0; i < sc->rx_num_queues; i++, que++) {
iflib_irq_free(ctx, &que->que_irq);
}
}
if (sc->memory != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->memory), sc->memory);
sc->memory = NULL;
}
if (sc->flash != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->flash), sc->flash);
sc->flash = NULL;
}
if (sc->ioport != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT,
rman_get_rid(sc->ioport), sc->ioport);
sc->ioport = NULL;
}
}
static int
em_setup_msix(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if (sc->hw.mac.type == e1000_82574) {
em_enable_vectors_82574(ctx);
}
return (0);
}
*
* Workaround for SmartSpeed on 82541 and 82547 controllers
*
**********************************************************************/
static void
lem_smartspeed(struct e1000_softc *sc)
{
u16 phy_tmp;
if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
sc->hw.mac.autoneg == 0 ||
(sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
return;
if (sc->smartspeed == 0) {
* we assume back-to-back */
e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
return;
e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
e1000_read_phy_reg(&sc->hw,
PHY_1000T_CTRL, &phy_tmp);
if(phy_tmp & CR_1000T_MS_ENABLE) {
phy_tmp &= ~CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&sc->hw,
PHY_1000T_CTRL, phy_tmp);
sc->smartspeed++;
if(sc->hw.mac.autoneg &&
!e1000_copper_link_autoneg(&sc->hw) &&
!e1000_read_phy_reg(&sc->hw,
PHY_CONTROL, &phy_tmp)) {
phy_tmp |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&sc->hw,
PHY_CONTROL, phy_tmp);
}
}
}
return;
} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
phy_tmp |= CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
if(sc->hw.mac.autoneg &&
!e1000_copper_link_autoneg(&sc->hw) &&
!e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
phy_tmp |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
}
}
if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
sc->smartspeed = 0;
}
*
* Initialize the DMA Coalescing feature
*
**********************************************************************/
static void
igb_init_dmac(struct e1000_softc *sc, u32 pba)
{
device_t dev = sc->dev;
struct e1000_hw *hw = &sc->hw;
u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
u16 hwm;
u16 max_frame_size;
if (hw->mac.type == e1000_i211)
return;
max_frame_size = sc->shared->isc_max_frame_size;
if (hw->mac.type > e1000_82580) {
if (sc->dmac == 0) {
E1000_WRITE_REG(hw, E1000_DMACR, reg);
return;
} else
device_printf(dev, "DMA Coalescing enabled\n");
E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
hwm = 64 * pba - max_frame_size / 16;
if (hwm < 64 * (pba - 6))
hwm = 64 * (pba - 6);
reg = E1000_READ_REG(hw, E1000_FCRTC);
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
& E1000_FCRTC_RTH_COAL_MASK);
E1000_WRITE_REG(hw, E1000_FCRTC, reg);
dmac = pba - max_frame_size / 512;
if (dmac < pba - 10)
dmac = pba - 10;
reg = E1000_READ_REG(hw, E1000_DMACR);
reg &= ~E1000_DMACR_DMACTHR_MASK;
reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
& E1000_DMACR_DMACTHR_MASK);
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
* before configuration of watchdog timer, which is
* in msec values in 12.8usec intervals
* watchdog timer= msec values in 32usec intervals
* for non 2.5Gb connection
*/
if (hw->mac.type == e1000_i354) {
int status = E1000_READ_REG(hw, E1000_STATUS);
if ((status & E1000_STATUS_2P5_SKU) &&
(!(status & E1000_STATUS_2P5_SKU_OVER)))
reg |= ((sc->dmac * 5) >> 6);
else
reg |= (sc->dmac >> 5);
} else {
reg |= (sc->dmac >> 5);
}
E1000_WRITE_REG(hw, E1000_DMACR, reg);
E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
reg = E1000_READ_REG(hw, E1000_DMCTLX);
if (hw->mac.type == e1000_i350)
reg |= IGB_DMCTLX_DCFLUSH_DIS;
** in 2.5Gb connection, TTLX unit is 0.4 usec
** which is 0x4*2 = 0xA. But delay is still 4 usec
*/
if (hw->mac.type == e1000_i354) {
int status = E1000_READ_REG(hw, E1000_STATUS);
if ((status & E1000_STATUS_2P5_SKU) &&
(!(status & E1000_STATUS_2P5_SKU_OVER)))
reg |= 0xA;
else
reg |= 0x4;
} else {
reg |= 0x4;
}
E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
(2 * max_frame_size)) >> 6);
reg = E1000_READ_REG(hw, E1000_PCIEMISC);
reg &= ~E1000_PCIEMISC_LX_DECISION;
E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
} else if (hw->mac.type == e1000_82580) {
u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
E1000_WRITE_REG(hw, E1000_PCIEMISC,
reg & ~E1000_PCIEMISC_LX_DECISION);
E1000_WRITE_REG(hw, E1000_DMACR, 0);
}
}
* The 3 following flush routines are used as a workaround in the
* I219 client parts and only for them.
*
* em_flush_tx_ring - remove all descriptors from the tx_ring
*
* We want to clear all pending descriptors from the TX ring.
* zeroing happens when the HW reads the regs. We assign the ring itself as
* the data of the next descriptor. We don't care about the data we are about
* to reset the HW.
**********************************************************************/
static void
em_flush_tx_ring(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
struct tx_ring *txr = &sc->tx_queues->txr;
struct e1000_tx_desc *txd;
u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
u16 size = 512;
tctl = E1000_READ_REG(hw, E1000_TCTL);
E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
txd = &txr->tx_base[txr->tx_cidx_processed];
txd->buffer_addr = txr->tx_paddr;
txd->lower.data = htole32(txd_lower | size);
txd->upper.data = 0;
wmb();
E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
mb();
usec_delay(250);
}
* em_flush_rx_ring - remove all descriptors from the rx_ring
*
* Mark all descriptors in the RX ring as consumed and disable the rx ring
**********************************************************************/
static void
em_flush_rx_ring(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
u32 rctl, rxdctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
E1000_WRITE_FLUSH(hw);
usec_delay(150);
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
rxdctl &= 0xffffc000;
* update thresholds: prefetch threshold to 31, host threshold to 1
* and make sure the granularity is "descriptors" and not
* "cache lines"
*/
rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
E1000_WRITE_FLUSH(hw);
usec_delay(150);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
}
* em_flush_desc_rings - remove all descriptors from the descriptor rings
*
* In I219, the descriptor rings must be emptied before resetting the HW
* or before changing the device state to D3 during runtime (runtime PM).
*
* Failure to do this will cause the HW to enter a unit hang state which can
* only be released by PCI reset on the device
*
**********************************************************************/
static void
em_flush_desc_rings(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
device_t dev = sc->dev;
u16 hang_state;
u32 fext_nvm11, tdlen;
fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
return;
em_flush_tx_ring(sc);
hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
if (hang_state & FLUSH_DESC_REQUIRED)
em_flush_rx_ring(sc);
}
*
* Initialize the hardware to a configuration as specified by the
* sc structure.
*
**********************************************************************/
static void
em_reset(if_ctx_t ctx)
{
device_t dev = iflib_get_dev(ctx);
struct e1000_softc *sc = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
struct e1000_hw *hw = &sc->hw;
u32 rx_buffer_size;
u32 pba;
INIT_DEBUGOUT("em_reset: begin");
em_get_hw_control(sc);
if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
hw->mac.type == e1000_82572)) {
u16 phy_tmp = 0;
e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
phy_tmp &= ~IGP02E1000_PM_SPD;
e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
}
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
*/
switch (hw->mac.type) {
case e1000_82547:
case e1000_82547_rev_2:
if (hw->mac.max_frame_size > 8192)
pba = E1000_PBA_22K;
else
pba = E1000_PBA_30K;
break;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
pba = E1000_PBA_32K;
break;
case e1000_82573:
pba = E1000_PBA_12K;
break;
case e1000_82574:
case e1000_82583:
pba = E1000_PBA_20K;
break;
case e1000_ich8lan:
pba = E1000_PBA_8K;
break;
case e1000_ich9lan:
case e1000_ich10lan:
if (hw->mac.max_frame_size > 4096)
pba = E1000_PBA_14K;
else
pba = E1000_PBA_10K;
break;
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_ptp:
pba = E1000_PBA_26K;
break;
case e1000_82575:
pba = E1000_PBA_32K;
break;
case e1000_82576:
case e1000_vfadapt:
pba = E1000_READ_REG(hw, E1000_RXPBS);
pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_vfadapt_i350:
pba = E1000_READ_REG(hw, E1000_RXPBS);
pba = e1000_rxpbs_adjust_82580(pba);
break;
case e1000_i210:
case e1000_i211:
pba = E1000_PBA_34K;
break;
default:
if (hw->mac.max_frame_size > 8192)
pba = E1000_PBA_40K;
else
pba = E1000_PBA_48K;
}
if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
u32 tx_space, min_tx, min_rx;
pba = E1000_READ_REG(hw, E1000_PBA);
tx_space = pba >> 16;
pba &= 0xffff;
min_tx = (hw->mac.max_frame_size +
sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
min_tx = roundup2(min_tx, 1024);
min_tx >>= 10;
min_rx = hw->mac.max_frame_size;
min_rx = roundup2(min_rx, 1024);
min_rx >>= 10;
if (tx_space < min_tx &&
((min_tx - tx_space) < pba)) {
pba = pba - (min_tx - tx_space);
* if short on rx space, rx wins
* and must trump tx adjustment
*/
if (pba < min_rx)
pba = min_rx;
}
E1000_WRITE_REG(hw, E1000_PBA, pba);
}
if (hw->mac.type < igb_mac_min)
E1000_WRITE_REG(hw, E1000_PBA, pba);
INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two frames to be
* received after sending an XOFF.
* - Low water mark works best when it is very near the high water
mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buffer_size = (pba & 0xffff) << 10;
hw->fc.high_water = rx_buffer_size -
roundup2(hw->mac.max_frame_size, 1024);
hw->fc.low_water = hw->fc.high_water - 1500;
if (sc->fc)
hw->fc.requested_mode = sc->fc;
else
hw->fc.requested_mode = e1000_fc_full;
if (hw->mac.type == e1000_80003es2lan)
hw->fc.pause_time = 0xFFFF;
else
hw->fc.pause_time = EM_FC_PAUSE_TIME;
hw->fc.send_xon = true;
switch (hw->mac.type) {
case e1000_pchlan:
hw->fc.requested_mode = e1000_fc_rx_pause;
hw->fc.pause_time = 0xFFFF;
if (if_getmtu(ifp) > ETHERMTU) {
hw->fc.high_water = 0x3500;
hw->fc.low_water = 0x1500;
} else {
hw->fc.high_water = 0x5000;
hw->fc.low_water = 0x3000;
}
hw->fc.refresh_time = 0x1000;
break;
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_ptp:
hw->fc.high_water = 0x5C20;
hw->fc.low_water = 0x5048;
hw->fc.pause_time = 0x0650;
hw->fc.refresh_time = 0x0400;
if (if_getmtu(ifp) > ETHERMTU)
E1000_WRITE_REG(hw, E1000_PBA, 12);
else
E1000_WRITE_REG(hw, E1000_PBA, 26);
break;
case e1000_82575:
case e1000_82576:
hw->fc.low_water = hw->fc.high_water - 8;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
case e1000_vfadapt:
case e1000_vfadapt_i350:
hw->fc.low_water = hw->fc.high_water - 16;
break;
case e1000_ich9lan:
case e1000_ich10lan:
if (if_getmtu(ifp) > ETHERMTU) {
hw->fc.high_water = 0x2800;
hw->fc.low_water = hw->fc.high_water - 8;
break;
}
default:
if (hw->mac.type == e1000_80003es2lan)
hw->fc.pause_time = 0xFFFF;
break;
}
if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
em_flush_desc_rings(sc);
e1000_reset_hw(hw);
if (!sc->vf_ifp) {
if (hw->mac.type >= igb_mac_min) {
E1000_WRITE_REG(hw, E1000_WUC, 0);
} else {
E1000_WRITE_REG(hw, E1000_WUFC, 0);
em_disable_aspm(sc);
}
}
if (sc->flags & IGB_MEDIA_RESET) {
e1000_setup_init_funcs(hw, true);
e1000_get_bus_info(hw);
sc->flags &= ~IGB_MEDIA_RESET;
}
if (e1000_init_hw(hw) < 0) {
device_printf(dev, "Hardware Initialization Failed\n");
return;
}
if (hw->mac.type >= igb_mac_min)
igb_init_dmac(sc, pba);
sc->pba = pba;
E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
e1000_get_phy_info(hw);
e1000_check_for_link(hw);
}
* Initialise the RSS mapping for NICs that support multiple transmit/
* receive rings.
*/
#define RSSKEYLEN 10
static void
em_initialize_rss_mapping(struct e1000_softc *sc)
{
uint8_t rss_key[4 * RSSKEYLEN];
uint32_t reta = 0;
struct e1000_hw *hw = &sc->hw;
int i;
* Configure RSS key
*/
arc4rand(rss_key, sizeof(rss_key), 0);
for (i = 0; i < RSSKEYLEN; ++i) {
uint32_t rssrk = 0;
rssrk = EM_RSSRK_VAL(rss_key, i);
E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
}
* Configure RSS redirect table in following fashion:
* (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
*/
for (i = 0; i < sizeof(reta); ++i) {
uint32_t q;
q = (i % sc->rx_num_queues) << 7;
reta |= q << (8 * i);
}
for (i = 0; i < 32; ++i)
E1000_WRITE_REG(hw, E1000_RETA(i), reta);
E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
E1000_MRQC_RSS_FIELD_IPV6_EX |
E1000_MRQC_RSS_FIELD_IPV6);
}
static void
igb_initialize_rss_mapping(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
int i;
int queue_id;
u32 reta;
u32 rss_key[10], mrqc, shift = 0;
if (hw->mac.type == e1000_82575)
shift = 6;
* The redirection table controls which destination
* queue each bucket redirects traffic to.
* Each DWORD represents four queues, with the LSB
* being the first queue in the DWORD.
*
* This just allocates buckets to queues using round-robin
* allocation.
*
* NOTE: It Just Happens to line up with the default
* RSS allocation method.
*/
reta = 0;
for (i = 0; i < 128; i++) {
#ifdef RSS
queue_id = rss_get_indirection_to_bucket(i);
* If we have more queues than buckets, we'll
* end up mapping buckets to a subset of the
* queues.
*
* If we have more buckets than queues, we'll
* end up instead assigning multiple buckets
* to queues.
*
* Both are suboptimal, but we need to handle
* the case so we don't go out of bounds
* indexing arrays and such.
*/
queue_id = queue_id % sc->rx_num_queues;
#else
queue_id = (i % sc->rx_num_queues);
#endif
queue_id = queue_id << shift;
* The low 8 bits are for hash value (n+0);
* The next 8 bits are for hash value (n+1), etc.
*/
reta = reta >> 8;
reta = reta | ( ((uint32_t) queue_id) << 24);
if ((i & 3) == 3) {
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
reta = 0;
}
}
* MRQC: Multiple Receive Queues Command
* Set queuing to RSS control, number depends on the device.
*/
mrqc = E1000_MRQC_ENABLE_RSS_MQ;
#ifdef RSS
rss_getkey((uint8_t *) &rss_key);
#else
arc4rand(&rss_key, sizeof(rss_key), 0);
#endif
for (i = 0; i < 10; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
* Configure the RSS fields to hash upon.
*/
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP);
mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP);
mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
E1000_MRQC_RSS_FIELD_IPV6_UDP);
mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
*
* Setup networking device structure and register interface media.
*
**********************************************************************/
static int
em_setup_interface(if_ctx_t ctx)
{
if_t ifp = iflib_get_ifp(ctx);
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = sc->shared;
INIT_DEBUGOUT("em_setup_interface: begin");
if (sc->tx_num_queues == 1) {
if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
if_setsendqready(ifp);
}
* Specify the media types supported by this adapter and register
* callbacks to update media and link information
*/
if (sc->hw.phy.media_type == e1000_media_type_fiber ||
sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
u_char fiber_type = IFM_1000_SX;
if (sc->hw.mac.type == e1000_82545)
fiber_type = IFM_1000_LX;
ifmedia_add(sc->media,
IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
} else {
ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(sc->media,
IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(sc->media,
IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
if (sc->hw.phy.type != e1000_phy_ife) {
ifmedia_add(sc->media,
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(sc->media,
IFM_ETHER | IFM_1000_T, 0, NULL);
}
}
ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
return (0);
}
static int
em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int ntxqs, int ntxqsets)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = sc->shared;
int error = E1000_SUCCESS;
struct em_tx_queue *que;
int i, j;
MPASS(sc->tx_num_queues > 0);
MPASS(sc->tx_num_queues == ntxqsets);
if (!(sc->tx_queues =
(struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
device_printf(iflib_get_dev(ctx),
"Unable to allocate queue memory\n");
return(ENOMEM);
}
for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
struct tx_ring *txr = &que->txr;
txr->sc = que->sc = sc;
que->me = txr->me = i;
if (!(txr->tx_rsq =
(qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
M_DEVBUF, M_NOWAIT | M_ZERO))) {
device_printf(iflib_get_dev(ctx),
"failed to allocate rs_idxs memory\n");
error = ENOMEM;
goto fail;
}
for (j = 0; j < scctx->isc_ntxd[0]; j++)
txr->tx_rsq[j] = QIDX_INVALID;
txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
txr->tx_paddr = paddrs[i*ntxqs];
}
if (bootverbose)
device_printf(iflib_get_dev(ctx),
"allocated for %d tx_queues\n", sc->tx_num_queues);
return (0);
fail:
em_if_queues_free(ctx);
return (error);
}
static int
em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int nrxqs, int nrxqsets)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
int error = E1000_SUCCESS;
struct em_rx_queue *que;
int i;
MPASS(sc->rx_num_queues > 0);
MPASS(sc->rx_num_queues == nrxqsets);
if (!(sc->rx_queues =
(struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
device_printf(iflib_get_dev(ctx),
"Unable to allocate queue memory\n");
error = ENOMEM;
goto fail;
}
for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
struct rx_ring *rxr = &que->rxr;
rxr->sc = que->sc = sc;
rxr->que = que;
que->me = rxr->me = i;
rxr->rx_base =
(union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
rxr->rx_paddr = paddrs[i*nrxqs];
}
if (bootverbose)
device_printf(iflib_get_dev(ctx),
"allocated for %d rx_queues\n", sc->rx_num_queues);
return (0);
fail:
em_if_queues_free(ctx);
return (error);
}
static void
em_if_queues_free(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct em_tx_queue *tx_que = sc->tx_queues;
struct em_rx_queue *rx_que = sc->rx_queues;
if (tx_que != NULL) {
for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
struct tx_ring *txr = &tx_que->txr;
if (txr->tx_rsq == NULL)
break;
free(txr->tx_rsq, M_DEVBUF);
txr->tx_rsq = NULL;
}
free(sc->tx_queues, M_DEVBUF);
sc->tx_queues = NULL;
}
if (rx_que != NULL) {
free(sc->rx_queues, M_DEVBUF);
sc->rx_queues = NULL;
}
}
*
* Enable transmit unit.
*
**********************************************************************/
static void
em_initialize_transmit_unit(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = sc->shared;
struct em_tx_queue *que;
struct tx_ring *txr;
struct e1000_hw *hw = &sc->hw;
u32 tctl, txdctl = 0, tarc, tipg = 0;
INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
u64 bus_addr;
caddr_t offp, endp;
que = &sc->tx_queues[i];
txr = &que->txr;
bus_addr = txr->tx_paddr;
offp = (caddr_t)&txr->csum_flags;
endp = (caddr_t)(txr + 1);
bzero(offp, endp - offp);
E1000_WRITE_REG(hw, E1000_TDLEN(i),
scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
HW_DEBUGOUT2("Base = %x, Length = %x\n",
E1000_READ_REG(hw, E1000_TDBAL(i)),
E1000_READ_REG(hw, E1000_TDLEN(i)));
txdctl = 0;
txdctl |= 0x1f;
txdctl |= 1 << 8;
txdctl |= 1 << 16;
txdctl |= 1 << 22;
txdctl |= E1000_TXDCTL_GRAN;
txdctl |= 1 << 25;
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
}
switch (hw->mac.type) {
case e1000_80003es2lan:
tipg = DEFAULT_82543_TIPG_IPGR1;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
E1000_TIPG_IPGR2_SHIFT;
break;
case e1000_82542:
tipg = DEFAULT_82542_TIPG_IPGT;
tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
break;
default:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes)
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
}
if (hw->mac.type < igb_mac_min) {
E1000_WRITE_REG(hw, E1000_TIPG, tipg);
E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
if (sc->tx_int_delay.value > 0)
sc->txd_cmd |= E1000_TXD_CMD_IDE;
}
if (hw->mac.type >= e1000_82540)
E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
tarc = E1000_READ_REG(hw, E1000_TARC(0));
tarc |= TARC_SPEED_MODE_BIT;
E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
} else if (hw->mac.type == e1000_80003es2lan) {
tarc = E1000_READ_REG(hw, E1000_TARC(0));
tarc |= 1;
E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
tarc = E1000_READ_REG(hw, E1000_TARC(1));
tarc |= 1;
E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
} else if (hw->mac.type == e1000_82574) {
tarc = E1000_READ_REG(hw, E1000_TARC(0));
tarc |= TARC_ERRATA_BIT;
if ( sc->tx_num_queues > 1) {
tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
} else
E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
}
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
tctl |= E1000_TCTL_MULR;
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
if (hw->mac.type == e1000_pch_spt) {
u32 reg;
reg = E1000_READ_REG(hw, E1000_IOSFPC);
reg |= E1000_RCTL_RDMTS_HEX;
E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
reg = E1000_READ_REG(hw, E1000_TARC(0));
reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
E1000_WRITE_REG(hw, E1000_TARC(0), reg);
}
}
*
* Enable receive unit.
*
**********************************************************************/
#define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
static void
em_initialize_receive_unit(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = sc->shared;
if_t ifp = iflib_get_ifp(ctx);
struct e1000_hw *hw = &sc->hw;
struct em_rx_queue *que;
int i;
uint32_t rctl, rxcsum;
INIT_DEBUGOUT("em_initialize_receive_units: begin");
* Make sure receives are disabled while setting
* up the descriptor ring
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
rctl &= ~E1000_RCTL_SBP;
if (if_getmtu(ifp) > ETHERMTU)
rctl |= E1000_RCTL_LPE;
else
rctl &= ~E1000_RCTL_LPE;
if (!em_disable_crc_stripping)
rctl |= E1000_RCTL_SECRC;
if (hw->mac.type < igb_mac_min) {
if (hw->mac.type >= e1000_82540) {
E1000_WRITE_REG(hw, E1000_RADV,
sc->rx_abs_int_delay.value);
E1000_WRITE_REG(hw, E1000_ITR,
EM_INTS_TO_ITR(em_max_interrupt_rate));
}
* long latencies are observed, like Lenovo X60. This
* change eliminates the problem, but since having positive
* values in RDTR is a known source of problems on other
* platforms another solution is being sought.
*/
if (hw->mac.type == e1000_82573)
E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
else
E1000_WRITE_REG(hw, E1000_RDTR,
sc->rx_int_delay.value);
}
if (hw->mac.type >= em_mac_min && !sc->vf_ifp) {
uint32_t rfctl;
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
rfctl |= E1000_RFCTL_EXTEN;
* When using MSI-X interrupts we need to throttle
* using the EITR register (82574 only)
*/
if (hw->mac.type == e1000_82574) {
for (int i = 0; i < 4; i++)
E1000_WRITE_REG(hw, E1000_EITR_82574(i),
EM_INTS_TO_ITR(em_max_interrupt_rate));
rfctl |= E1000_RFCTL_ACK_DIS;
}
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
}
* Set up L3 and L4 csum Rx descriptor offloads only on Physical
* Functions. Virtual Functions have no access to this register.
*/
if (!sc->vf_ifp) {
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
if (hw->mac.type > e1000_82575)
rxcsum |= E1000_RXCSUM_CRCOFL;
else if (hw->mac.type < em_mac_min &&
if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
rxcsum |= E1000_RXCSUM_IPV6OFL;
} else {
rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
if (hw->mac.type > e1000_82575)
rxcsum &= ~E1000_RXCSUM_CRCOFL;
else if (hw->mac.type < em_mac_min)
rxcsum &= ~E1000_RXCSUM_IPV6OFL;
}
if (sc->rx_num_queues > 1) {
rxcsum |= E1000_RXCSUM_PCSD;
if (hw->mac.type >= igb_mac_min)
igb_initialize_rss_mapping(sc);
else
em_initialize_rss_mapping(sc);
}
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
}
for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
struct rx_ring *rxr = &que->rxr;
u64 bus_addr = rxr->rx_paddr;
#if 0
u32 rdt = sc->rx_num_queues -1;
#endif
E1000_WRITE_REG(hw, E1000_RDLEN(i),
scctx->isc_nrxd[0] *
sizeof(union e1000_rx_desc_extended));
E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
E1000_WRITE_REG(hw, E1000_RDT(i), 0);
}
* Set PTHRESH for improved jumbo performance
* According to 10.2.5.11 of Intel 82574 Datasheet,
* RXDCTL(1) is written whenever RXDCTL(0) is written.
* Only write to RXDCTL(1) if there is a need for different
* settings.
*/
if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
} else if (hw->mac.type == e1000_82574) {
for (int i = 0; i < sc->rx_num_queues; i++) {
u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
rxdctl |= 0x20;
rxdctl |= 4 << 8;
rxdctl |= 4 << 16;
rxdctl |= 1 << 24;
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
}
} else if (hw->mac.type >= igb_mac_min) {
u32 psize, srrctl = 0;
if (if_getmtu(ifp) > ETHERMTU) {
psize = scctx->isc_max_frame_size;
if (if_vlantrunkinuse(ifp))
psize += VLAN_TAG_SIZE;
if (sc->vf_ifp)
e1000_rlpml_set_vf(hw, psize);
else
E1000_WRITE_REG(hw, E1000_RLPML, psize);
}
srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
E1000_SRRCTL_BSIZEPKT_SHIFT;
* If TX flow control is disabled and there's >1 queue
* defined, enable DROP.
*
* This drops frames rather than hanging the RX MAC for all
* queues.
*/
if ((sc->rx_num_queues > 1) &&
(sc->fc == e1000_fc_none ||
sc->fc == e1000_fc_rx_pause)) {
srrctl |= E1000_SRRCTL_DROP_EN;
}
for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
i++, que++) {
struct rx_ring *rxr = &que->rxr;
u64 bus_addr = rxr->rx_paddr;
u32 rxdctl;
#ifdef notyet
rxr->hdr_split = igb_header_split;
#else
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
#endif
E1000_WRITE_REG(hw, E1000_RDLEN(i),
scctx->isc_nrxd[0] *
sizeof(struct e1000_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(i),
(uint32_t)bus_addr);
E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= IGB_RX_PTHRESH;
rxdctl |= IGB_RX_HTHRESH << 8;
rxdctl |= IGB_RX_WTHRESH << 16;
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
}
} else if (hw->mac.type >= e1000_pch2lan) {
if (if_getmtu(ifp) > ETHERMTU)
e1000_lv_jumbo_workaround_ich8lan(hw, true);
else
e1000_lv_jumbo_workaround_ich8lan(hw, false);
}
rctl &= ~E1000_RCTL_VFE;
if (hw->mac.type < igb_mac_min) {
if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
else if (sc->rx_mbuf_sz > 8192)
rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
else {
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~E1000_RCTL_BSEX;
}
} else
rctl |= E1000_RCTL_SZ_2048;
* rctl bits 11:10 are as follows
* lem: reserved
* em: DTYPE
* igb: reserved
* and should be 00 on all of the above
*/
rctl &= ~0x00000C00;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
return;
}
static void
em_if_vlan_register(if_ctx_t ctx, u16 vtag)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
u32 index, bit;
index = (vtag >> 5) & 0x7F;
bit = vtag & 0x1F;
sc->shadow_vfta[index] |= (1 << bit);
++sc->num_vlans;
em_if_vlan_filter_write(sc);
}
static void
em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
u32 index, bit;
index = (vtag >> 5) & 0x7F;
bit = vtag & 0x1F;
sc->shadow_vfta[index] &= ~(1 << bit);
--sc->num_vlans;
em_if_vlan_filter_write(sc);
}
static bool
em_if_vlan_filter_capable(if_ctx_t ctx)
{
if_t ifp = iflib_get_ifp(ctx);
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
!em_disable_crc_stripping)
return (true);
return (false);
}
static bool
em_if_vlan_filter_used(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if (!em_if_vlan_filter_capable(ctx))
return (false);
for (int i = 0; i < EM_VFTA_SIZE; i++)
if (sc->shadow_vfta[i] != 0)
return (true);
return (false);
}
static void
em_if_vlan_filter_enable(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
u32 reg;
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
}
static void
em_if_vlan_filter_disable(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
u32 reg;
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
E1000_WRITE_REG(hw, E1000_RCTL, reg);
}
static void
em_if_vlan_filter_write(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
if (sc->vf_ifp)
return;
if (hw->mac.type < em_mac_min)
em_if_intr_disable(sc->ctx);
for (int i = 0; i < EM_VFTA_SIZE; i++)
if (sc->shadow_vfta[i] != 0) {
if (sc->vf_ifp)
e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
true);
else
e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
}
if (hw->mac.type < em_mac_min)
em_if_intr_enable(sc->ctx);
}
static void
em_setup_vlan_hw_support(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
if_t ifp = iflib_get_ifp(ctx);
u32 reg;
* management is ready and tested.
*/
if (sc->vf_ifp)
return;
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
!em_disable_crc_stripping) {
reg = E1000_READ_REG(hw, E1000_CTRL);
reg |= E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
} else {
reg = E1000_READ_REG(hw, E1000_CTRL);
reg &= ~E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
if (!em_if_vlan_filter_capable(ctx)) {
em_if_vlan_filter_disable(sc);
return;
}
* A soft reset zero's out the VFTA, so
* we need to repopulate it now.
* We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
* traffic through. This will write the entire table.
*/
em_if_vlan_register(ctx, 0);
em_if_vlan_filter_enable(sc);
}
static void
em_if_intr_enable(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
u32 ims_mask = IMS_ENABLE_MASK;
if (sc->intr_type == IFLIB_INTR_MSIX) {
E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
ims_mask |= sc->ims;
}
E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
E1000_WRITE_FLUSH(hw);
}
static void
em_if_intr_disable(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
if (sc->intr_type == IFLIB_INTR_MSIX)
E1000_WRITE_REG(hw, EM_EIAC, 0);
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
E1000_WRITE_FLUSH(hw);
}
static void
igb_if_intr_enable(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
u32 mask;
if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
mask = (sc->que_mask | sc->link_mask);
E1000_WRITE_REG(hw, E1000_EIAC, mask);
E1000_WRITE_REG(hw, E1000_EIAM, mask);
E1000_WRITE_REG(hw, E1000_EIMS, mask);
E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
} else
E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
E1000_WRITE_FLUSH(hw);
}
static void
igb_if_intr_disable(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
E1000_WRITE_REG(hw, E1000_EIAC, 0);
}
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
E1000_WRITE_FLUSH(hw);
}
* Bit of a misnomer, what this really means is
* to enable OS management of the system... aka
* to disable special hardware management features
*/
static void
em_init_manageability(struct e1000_softc *sc)
{
#define E1000_82542_MANC2H E1000_MANC2H
if (sc->has_manage) {
int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
manc &= ~(E1000_MANC_ARP_EN);
manc |= E1000_MANC_EN_MNG2HOST;
#define E1000_MNG2HOST_PORT_623 (1 << 5)
#define E1000_MNG2HOST_PORT_664 (1 << 6)
manc2h |= E1000_MNG2HOST_PORT_623;
manc2h |= E1000_MNG2HOST_PORT_664;
E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
}
}
* Give control back to hardware management
* controller if there is one.
*/
static void
em_release_manageability(struct e1000_softc *sc)
{
if (sc->has_manage) {
int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
manc |= E1000_MANC_ARP_EN;
manc &= ~E1000_MANC_EN_MNG2HOST;
E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
}
}
* em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded. For AMT version type f/w
* this means that the network i/f is open.
*/
static void
em_get_hw_control(struct e1000_softc *sc)
{
u32 ctrl_ext, swsm;
if (sc->vf_ifp)
return;
if (sc->hw.mac.type == e1000_82573) {
swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
E1000_WRITE_REG(&sc->hw, E1000_SWSM,
swsm | E1000_SWSM_DRV_LOAD);
return;
}
ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
* em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is no longer loaded. For AMT versions of the
* f/w this means that the network i/f is closed.
*/
static void
em_release_hw_control(struct e1000_softc *sc)
{
u32 ctrl_ext, swsm;
if (!sc->has_manage)
return;
if (sc->hw.mac.type == e1000_82573) {
swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
E1000_WRITE_REG(&sc->hw, E1000_SWSM,
swsm & ~E1000_SWSM_DRV_LOAD);
return;
}
ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
return;
}
static int
em_is_valid_ether_addr(u8 *addr)
{
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
return (false);
}
return (true);
}
static bool
em_automask_tso(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
if_t ifp = iflib_get_ifp(ctx);
if (!em_unsupported_tso && sc->link_speed &&
sc->link_speed != SPEED_1000 &&
scctx->isc_capenable & IFCAP_TSO) {
device_printf(sc->dev,
"Disabling TSO for 10/100 Ethernet.\n");
sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
scctx->isc_capenable &= ~IFCAP_TSO;
if_setcapenablebit(ifp, 0, IFCAP_TSO);
iflib_request_reset(ctx);
return true;
} else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
scctx->isc_capenable |= sc->tso_automasked;
if_setcapenablebit(ifp, sc->tso_automasked, 0);
sc->tso_automasked = 0;
iflib_request_reset(ctx);
return true;
}
return false;
}
** Parse the interface capabilities with regard
** to both system management and wake-on-lan for
** later use.
*/
static void
em_get_wakeup(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
device_t dev = iflib_get_dev(ctx);
u16 eeprom_data = 0, device_id, apme_mask;
sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
apme_mask = EM_EEPROM_APME;
switch (sc->hw.mac.type) {
case e1000_82542:
case e1000_82543:
case e1000_vfadapt:
case e1000_vfadapt_i350:
break;
case e1000_82544:
e1000_read_nvm(&sc->hw,
NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
apme_mask = EM_82544_APME;
break;
case e1000_82546:
case e1000_82546_rev_3:
if (sc->hw.bus.func == 1) {
e1000_read_nvm(&sc->hw,
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
break;
} else
e1000_read_nvm(&sc->hw,
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
break;
case e1000_82573:
case e1000_82583:
sc->has_amt = true;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
if (sc->hw.bus.func == 1) {
e1000_read_nvm(&sc->hw,
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
break;
} else
e1000_read_nvm(&sc->hw,
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
break;
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_82575:
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
apme_mask = E1000_WUC_APME;
sc->has_amt = true;
eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
break;
default:
e1000_read_nvm(&sc->hw,
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
break;
}
if (eeprom_data & apme_mask)
sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
* We have the eeprom settings, now apply the special cases
* where the eeprom may be wrong or the board won't support
* wake on lan on a particular port
*/
device_id = pci_get_device(dev);
switch (device_id) {
case E1000_DEV_ID_82546GB_PCIE:
sc->wol = 0;
break;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
* regardless of eeprom setting */
if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
E1000_STATUS_FUNC_1)
sc->wol = 0;
break;
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
if (global_quad_port_a != 0)
sc->wol = 0;
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
case E1000_DEV_ID_82571EB_FIBER:
* regardless of eeprom setting */
if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
E1000_STATUS_FUNC_1)
sc->wol = 0;
break;
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
if (global_quad_port_a != 0)
sc->wol = 0;
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
}
}
* Enable PCI Wake On Lan capability
*/
static void
em_enable_wakeup(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
device_t dev = iflib_get_dev(ctx);
if_t ifp = iflib_get_ifp(ctx);
int error = 0;
u32 pmc, ctrl, ctrl_ext, rctl;
u16 status;
if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
return;
* Determine type of Wakeup: note that wol
* is set with all bits on by default.
*/
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
sc->wol &= ~E1000_WUFC_MAG;
if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
sc->wol &= ~E1000_WUFC_EX;
if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
sc->wol &= ~E1000_WUFC_MC;
else {
rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
}
if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
goto pme;
ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
if (sc->hw.phy.media_type == e1000_media_type_fiber ||
sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
}
if ((sc->hw.mac.type == e1000_ich8lan) ||
(sc->hw.mac.type == e1000_pchlan) ||
(sc->hw.mac.type == e1000_ich9lan) ||
(sc->hw.mac.type == e1000_ich10lan))
e1000_suspend_workarounds_ich8lan(&sc->hw);
if ( sc->hw.mac.type >= e1000_pchlan) {
error = em_enable_phy_wakeup(sc);
if (error)
goto pme;
} else {
E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
}
if (sc->hw.phy.type == e1000_phy_igp_3)
e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
pme:
status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
return;
}
* WOL in the newer chipset interfaces (pchlan)
* require thing to be copied into the phy
*/
static int
em_enable_phy_wakeup(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
u32 mreg, ret = 0;
u16 preg;
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
for (int i = 0; i < hw->mac.mta_reg_count; i++) {
mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
e1000_write_phy_reg(hw, BM_MTA(i) + 1,
(u16)((mreg >> 16) & 0xFFFF));
}
e1000_read_phy_reg(hw, BM_RCTL, &preg);
mreg = E1000_READ_REG(hw, E1000_RCTL);
if (mreg & E1000_RCTL_UPE)
preg |= BM_RCTL_UPE;
if (mreg & E1000_RCTL_MPE)
preg |= BM_RCTL_MPE;
preg &= ~(BM_RCTL_MO_MASK);
if (mreg & E1000_RCTL_MO_3)
preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
<< BM_RCTL_MO_SHIFT);
if (mreg & E1000_RCTL_BAM)
preg |= BM_RCTL_BAM;
if (mreg & E1000_RCTL_PMCF)
preg |= BM_RCTL_PMCF;
mreg = E1000_READ_REG(hw, E1000_CTRL);
if (mreg & E1000_CTRL_RFCE)
preg |= BM_RCTL_RFCE;
e1000_write_phy_reg(hw, BM_RCTL, preg);
E1000_WRITE_REG(hw, E1000_WUC,
E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
ret = hw->phy.ops.acquire(hw);
if (ret) {
printf("Could not acquire PHY\n");
return ret;
}
e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
(BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
if (ret) {
printf("Could not read PHY page 769\n");
goto out;
}
preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
if (ret)
printf("Could not set PHY Host Wakeup bit\n");
out:
hw->phy.ops.release(hw);
return ret;
}
static void
em_if_led_func(if_ctx_t ctx, int onoff)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if (onoff) {
e1000_setup_led(&sc->hw);
e1000_led_on(&sc->hw);
} else {
e1000_led_off(&sc->hw);
e1000_cleanup_led(&sc->hw);
}
}
* Disable the L0S and L1 LINK states
*/
static void
em_disable_aspm(struct e1000_softc *sc)
{
int base, reg;
u16 link_cap,link_ctrl;
device_t dev = sc->dev;
switch (sc->hw.mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
break;
default:
return;
}
if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
return;
reg = base + PCIER_LINK_CAP;
link_cap = pci_read_config(dev, reg, 2);
if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
return;
reg = base + PCIER_LINK_CTL;
link_ctrl = pci_read_config(dev, reg, 2);
link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
pci_write_config(dev, reg, link_ctrl, 2);
return;
}
*
* Update the board statistics counters.
*
**********************************************************************/
static void
em_update_stats_counters(struct e1000_softc *sc)
{
struct e1000_hw_stats *stats;
u64 prev_xoffrxc;
if (sc->vf_ifp) {
em_update_vf_stats_counters(sc);
return;
}
stats = &sc->ustats.stats;
prev_xoffrxc = stats->xoffrxc;
if(sc->hw.phy.media_type == e1000_media_type_copper ||
(E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
stats->symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
stats->sec += E1000_READ_REG(&sc->hw, E1000_SEC);
}
stats->crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
stats->mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
stats->scc += E1000_READ_REG(&sc->hw, E1000_SCC);
stats->ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
stats->mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
stats->latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
stats->colc += E1000_READ_REG(&sc->hw, E1000_COLC);
stats->dc += E1000_READ_REG(&sc->hw, E1000_DC);
stats->rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
stats->xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
stats->xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
stats->xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
** For watchdog management we need to know if we have been
** paused during the last interval, so capture that here.
*/
if (stats->xoffrxc != prev_xoffrxc)
sc->shared->isc_pause_frames = 1;
stats->xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
stats->fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
stats->prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
stats->prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
stats->prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
stats->prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
stats->prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
stats->prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
stats->gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
stats->bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
stats->mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
stats->gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
stats->gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
stats->gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
stats->rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
stats->ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
stats->rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
stats->roc += E1000_READ_REG(&sc->hw, E1000_ROC);
stats->rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
stats->mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
stats->mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
stats->mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
stats->tor += E1000_READ_REG(&sc->hw, E1000_TORH);
stats->tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
stats->tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
stats->tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
stats->ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
stats->ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
stats->ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
stats->ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
stats->ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
stats->ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
stats->mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
stats->bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
stats->iac += E1000_READ_REG(&sc->hw, E1000_IAC);
stats->icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
stats->icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
stats->ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
stats->ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
stats->ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
stats->ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
stats->icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
stats->icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
if (sc->hw.mac.type >= e1000_82543) {
stats->algnerrc +=
E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
stats->rxerrc +=
E1000_READ_REG(&sc->hw, E1000_RXERRC);
stats->tncrs +=
E1000_READ_REG(&sc->hw, E1000_TNCRS);
stats->cexterr +=
E1000_READ_REG(&sc->hw, E1000_CEXTERR);
stats->tsctc +=
E1000_READ_REG(&sc->hw, E1000_TSCTC);
stats->tsctfc +=
E1000_READ_REG(&sc->hw, E1000_TSCTFC);
}
}
static void
em_update_vf_stats_counters(struct e1000_softc *sc)
{
struct e1000_vf_stats *stats;
if (sc->link_speed == 0)
return;
stats = &sc->ustats.vf_stats;
UPDATE_VF_REG(E1000_VFGPRC,
stats->last_gprc, stats->gprc);
UPDATE_VF_REG(E1000_VFGORC,
stats->last_gorc, stats->gorc);
UPDATE_VF_REG(E1000_VFGPTC,
stats->last_gptc, stats->gptc);
UPDATE_VF_REG(E1000_VFGOTC,
stats->last_gotc, stats->gotc);
UPDATE_VF_REG(E1000_VFMPRC,
stats->last_mprc, stats->mprc);
}
static uint64_t
em_if_get_vf_counter(if_ctx_t ctx, ift_counter cnt)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
switch (cnt) {
case IFCOUNTER_IERRORS:
return sc->dropped_pkts;
case IFCOUNTER_OERRORS:
return sc->watchdog_events;
default:
return (if_get_counter_default(ifp, cnt));
}
}
static uint64_t
em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw_stats *stats;
if_t ifp = iflib_get_ifp(ctx);
if (sc->vf_ifp)
return (em_if_get_vf_counter(ctx, cnt));
stats = &sc->ustats.stats;
switch (cnt) {
case IFCOUNTER_COLLISIONS:
return (stats->colc);
case IFCOUNTER_IERRORS:
return (sc->dropped_pkts + stats->rxerrc +
stats->crcerrs + stats->algnerrc +
stats->ruc + stats->roc +
stats->mpc + stats->cexterr);
case IFCOUNTER_OERRORS:
return (stats->ecol + stats->latecol +
sc->watchdog_events);
default:
return (if_get_counter_default(ifp, cnt));
}
}
* @ctx: iflib context
* @event: event code to check
*
* Defaults to returning false for unknown events.
*
* @returns true if iflib needs to reinit the interface
*/
static bool
em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
{
switch (event) {
case IFLIB_RESTART_VLAN_CONFIG:
default:
return (false);
}
}
static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
{
#ifndef __HAIKU__
struct e1000_softc *sc;
u_int val;
sc = oidp->oid_arg1;
val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
return (sysctl_handle_int(oidp, &val, 0, req));
#endif
}
static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
{
#ifndef __HAIKU__
struct em_rx_queue *rque;
struct em_tx_queue *tque;
struct e1000_hw *hw;
int error;
u32 reg, usec, rate;
bool tx = oidp->oid_arg2;
if (tx) {
tque = oidp->oid_arg1;
hw = &tque->sc->hw;
if (hw->mac.type >= igb_mac_min)
reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
else if (hw->mac.type == e1000_82574 && tque->msix)
reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
else
reg = E1000_READ_REG(hw, E1000_ITR);
} else {
rque = oidp->oid_arg1;
hw = &rque->sc->hw;
if (hw->mac.type >= igb_mac_min)
reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
else if (hw->mac.type == e1000_82574 && rque->msix)
reg = E1000_READ_REG(hw,
E1000_EITR_82574(rque->msix));
else
reg = E1000_READ_REG(hw, E1000_ITR);
}
if (hw->mac.type < igb_mac_min) {
if (reg > 0)
rate = EM_INTS_TO_ITR(reg);
else
rate = 0;
} else {
usec = (reg & IGB_QVECTOR_MASK);
if (usec > 0)
rate = IGB_INTS_TO_EITR(usec);
else
rate = 0;
}
error = sysctl_handle_int(oidp, &rate, 0, req);
if (error || !req->newptr)
return error;
return 0;
#endif
}
* Add sysctl variables, one per statistic, to the system.
*/
static void
em_add_hw_stats(struct e1000_softc *sc)
{
#ifndef __HAIKU__
device_t dev = iflib_get_dev(sc->ctx);
struct em_tx_queue *tx_que = sc->tx_queues;
struct em_rx_queue *rx_que = sc->rx_queues;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
struct e1000_hw_stats *stats;
struct sysctl_oid *stat_node, *queue_node, *int_node;
struct sysctl_oid_list *stat_list, *queue_list, *int_list;
#define QUEUE_NAME_LEN 32
char namebuf[QUEUE_NAME_LEN];
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
CTLFLAG_RD, &sc->dropped_pkts,
"Driver dropped packets");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
CTLFLAG_RD, &sc->link_irq,
"Link MSI-X IRQ Handled");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
CTLFLAG_RD, &sc->rx_overruns,
"RX overruns");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
CTLFLAG_RD, &sc->watchdog_events,
"Watchdog timeouts");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
CTLTYPE_UINT | CTLFLAG_RD,
sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
"Device Control Register");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
CTLTYPE_UINT | CTLFLAG_RD,
sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
"Receiver Control Register");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
CTLFLAG_RD, &sc->hw.fc.high_water, 0,
"Flow Control High Watermark");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
CTLFLAG_RD, &sc->hw.fc.low_water, 0,
"Flow Control Low Watermark");
for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
struct tx_ring *txr = &tx_que->txr;
snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
CTLTYPE_UINT | CTLFLAG_RD, tx_que,
true, em_sysctl_interrupt_rate_handler,
"IU", "Interrupt Rate");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
CTLTYPE_UINT | CTLFLAG_RD, sc,
E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
"Transmit Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
CTLTYPE_UINT | CTLFLAG_RD, sc,
E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
"Transmit Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
CTLFLAG_RD, &txr->tx_irq,
"Queue MSI-X Transmit Interrupts");
}
for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
struct rx_ring *rxr = &rx_que->rxr;
snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
CTLTYPE_UINT | CTLFLAG_RD, rx_que,
false, em_sysctl_interrupt_rate_handler,
"IU", "Interrupt Rate");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
CTLTYPE_UINT | CTLFLAG_RD, sc,
E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
"Receive Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
CTLTYPE_UINT | CTLFLAG_RD, sc,
E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
"Receive Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
CTLFLAG_RD, &rxr->rx_irq,
"Queue MSI-X Receive Interrupts");
}
stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
stat_list = SYSCTL_CHILDREN(stat_node);
** VF adapter has a very limited set of stats
** since its not managing the metal, so to speak.
*/
if (sc->vf_ifp) {
struct e1000_vf_stats *vfstats = &sc->ustats.vf_stats;
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
CTLFLAG_RD, &vfstats->gprc,
"Good Packets Received");
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
CTLFLAG_RD, &vfstats->gptc,
"Good Packets Transmitted");
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
CTLFLAG_RD, &vfstats->gorc,
"Good Octets Received");
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
CTLFLAG_RD, &vfstats->gotc,
"Good Octets Transmitted");
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
CTLFLAG_RD, &vfstats->mprc,
"Multicast Packets Received");
return;
}
stats = &sc->ustats.stats;
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
CTLFLAG_RD, &stats->ecol,
"Excessive collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
CTLFLAG_RD, &stats->scc,
"Single collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
CTLFLAG_RD, &stats->mcc,
"Multiple collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
CTLFLAG_RD, &stats->latecol,
"Late collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
CTLFLAG_RD, &stats->colc,
"Collision Count");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
CTLFLAG_RD, &stats->symerrs,
"Symbol Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
CTLFLAG_RD, &stats->sec,
"Sequence Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
CTLFLAG_RD, &stats->dc,
"Defer Count");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
CTLFLAG_RD, &stats->mpc,
"Missed Packets");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
CTLFLAG_RD, &stats->rlec,
"Receive Length Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
CTLFLAG_RD, &stats->rnbc,
"Receive No Buffers");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
CTLFLAG_RD, &stats->ruc,
"Receive Undersize");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
CTLFLAG_RD, &stats->rfc,
"Fragmented Packets Received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
CTLFLAG_RD, &stats->roc,
"Oversized Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
CTLFLAG_RD, &stats->rjc,
"Recevied Jabber");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
CTLFLAG_RD, &stats->rxerrc,
"Receive Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
CTLFLAG_RD, &stats->crcerrs,
"CRC errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
CTLFLAG_RD, &stats->algnerrc,
"Alignment Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
CTLFLAG_RD, &stats->cexterr,
"Collision/Carrier extension errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
CTLFLAG_RD, &stats->xonrxc,
"XON Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
CTLFLAG_RD, &stats->xontxc,
"XON Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
CTLFLAG_RD, &stats->xoffrxc,
"XOFF Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
CTLFLAG_RD, &stats->xofftxc,
"XOFF Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
CTLFLAG_RD, &stats->fcruc,
"Unsupported Flow Control Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
CTLFLAG_RD, &stats->mgprc,
"Management Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
CTLFLAG_RD, &stats->mgpdc,
"Management Packets Dropped");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
CTLFLAG_RD, &stats->mgptc,
"Management Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
CTLFLAG_RD, &stats->tpr,
"Total Packets Received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
CTLFLAG_RD, &stats->gprc,
"Good Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
CTLFLAG_RD, &stats->bprc,
"Broadcast Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
CTLFLAG_RD, &stats->mprc,
"Multicast Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
CTLFLAG_RD, &stats->prc64,
"64 byte frames received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
CTLFLAG_RD, &stats->prc127,
"65-127 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
CTLFLAG_RD, &stats->prc255,
"128-255 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
CTLFLAG_RD, &stats->prc511,
"256-511 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
CTLFLAG_RD, &stats->prc1023,
"512-1023 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
CTLFLAG_RD, &stats->prc1522,
"1023-1522 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
CTLFLAG_RD, &stats->gorc,
"Good Octets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
CTLFLAG_RD, &stats->gotc,
"Good Octets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
CTLFLAG_RD, &stats->tpt,
"Total Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
CTLFLAG_RD, &stats->gptc,
"Good Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
CTLFLAG_RD, &stats->bptc,
"Broadcast Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
CTLFLAG_RD, &stats->mptc,
"Multicast Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
CTLFLAG_RD, &stats->ptc64,
"64 byte frames transmitted ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
CTLFLAG_RD, &stats->ptc127,
"65-127 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
CTLFLAG_RD, &stats->ptc255,
"128-255 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
CTLFLAG_RD, &stats->ptc511,
"256-511 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
CTLFLAG_RD, &stats->ptc1023,
"512-1023 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
CTLFLAG_RD, &stats->ptc1522,
"1024-1522 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
CTLFLAG_RD, &stats->tsctc,
"TSO Contexts Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
CTLFLAG_RD, &stats->tsctfc,
"TSO Contexts Failed");
int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
int_list = SYSCTL_CHILDREN(int_node);
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
CTLFLAG_RD, &stats->iac,
"Interrupt Assertion Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
CTLFLAG_RD, &stats->icrxptc,
"Interrupt Cause Rx Pkt Timer Expire Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
CTLFLAG_RD, &stats->icrxatc,
"Interrupt Cause Rx Abs Timer Expire Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
CTLFLAG_RD, &stats->ictxptc,
"Interrupt Cause Tx Pkt Timer Expire Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
CTLFLAG_RD, &stats->ictxatc,
"Interrupt Cause Tx Abs Timer Expire Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
CTLFLAG_RD, &stats->ictxqec,
"Interrupt Cause Tx Queue Empty Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
CTLFLAG_RD, &stats->ictxqmtc,
"Interrupt Cause Tx Queue Min Thresh Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
CTLFLAG_RD, &stats->icrxdmtc,
"Interrupt Cause Rx Desc Min Thresh Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
CTLFLAG_RD, &stats->icrxoc,
"Interrupt Cause Receiver Overrun Count");
#endif
}
static void
em_fw_version_locked(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
struct e1000_fw_version *fw_ver = &sc->fw_ver;
uint16_t eep = 0;
* em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
* the NVM locking model, so we do it in em_if_attach_pre() and store
* the info in the softc
*/
ASSERT_CTX_LOCK_HELD(hw);
*fw_ver = (struct e1000_fw_version){0};
if (hw->mac.type >= igb_mac_min) {
* Use the Shared Code for igb(4)
*/
e1000_get_fw_version(hw, fw_ver);
} else {
* Otherwise, EEPROM version should be present on (almost?)
* all devices here
*/
if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
INIT_DEBUGOUT("can't get EEPROM version");
return;
}
fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
}
}
static void
em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
{
const char *space = "";
if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
fw_ver->eep_minor, fw_ver->eep_build);
space = " ";
}
if (fw_ver->invm_major || fw_ver->invm_minor ||
fw_ver->invm_img_type) {
sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
space, fw_ver->invm_major, fw_ver->invm_minor,
fw_ver->invm_img_type);
space = " ";
}
if (fw_ver->or_valid) {
sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
space, fw_ver->or_major, fw_ver->or_build,
fw_ver->or_patch);
space = " ";
}
if (fw_ver->etrack_id)
sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
}
static void
em_print_fw_version(struct e1000_softc *sc )
{
device_t dev = sc->dev;
struct sbuf *buf;
int error = 0;
buf = sbuf_new_auto();
if (!buf) {
device_printf(dev, "Could not allocate sbuf for output.\n");
return;
}
em_sbuf_fw_version(&sc->fw_ver, buf);
error = sbuf_finish(buf);
if (error)
device_printf(dev, "Error finishing sbuf: %d\n", error);
else if (sbuf_len(buf))
device_printf(dev, "%s\n", sbuf_data(buf));
sbuf_delete(buf);
}
static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc = (struct e1000_softc *)arg1;
device_t dev = sc->dev;
struct sbuf *buf;
int error = 0;
buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (!buf) {
device_printf(dev, "Could not allocate sbuf for output.\n");
return (ENOMEM);
}
em_sbuf_fw_version(&sc->fw_ver, buf);
error = sbuf_finish(buf);
if (error)
device_printf(dev, "Error finishing sbuf: %d\n", error);
sbuf_delete(buf);
return (0);
}
*
* This routine provides a way to dump out the adapter eeprom,
* often a useful debug/service tool. This only dumps the first
* 32 words, stuff that matters is in that extent.
*
**********************************************************************/
static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc = (struct e1000_softc *)arg1;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
* This value will cause a hex dump of the
* first 32 16-bit words of the EEPROM to
* the screen.
*/
if (result == 1)
em_print_nvm_info(sc);
return (error);
}
static void
em_print_nvm_info(struct e1000_softc *sc)
{
struct e1000_hw *hw = &sc->hw;
struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
u16 eeprom_data;
int i, j, row = 0;
printf("\nInterface EEPROM Dump:\n");
printf("Offset\n0x0000 ");
sx_xlock(iflib_ctx_lock);
ASSERT_CTX_LOCK_HELD(hw);
for (i = 0, j = 0; i < 32; i++, j++) {
if (j == 8) {
j = 0; ++row;
printf("\n0x00%x0 ",row);
}
e1000_read_nvm(hw, i, 1, &eeprom_data);
printf("%04x ", eeprom_data);
}
sx_xunlock(iflib_ctx_lock);
printf("\n");
}
static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
{
#ifndef __HAIKU__
struct em_int_delay_info *info;
struct e1000_softc *sc;
u32 regval;
int error, usecs, ticks;
info = (struct em_int_delay_info *) arg1;
usecs = info->value;
error = sysctl_handle_int(oidp, &usecs, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
return (EINVAL);
info->value = usecs;
ticks = EM_USECS_TO_TICKS(usecs);
sc = info->sc;
regval = E1000_READ_OFFSET(&sc->hw, info->offset);
regval = (regval & ~0xffff) | (ticks & 0xffff);
switch (info->offset) {
case E1000_RDTR:
break;
case E1000_TIDV:
if (ticks == 0) {
sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
regval++;
} else
sc->txd_cmd |= E1000_TXD_CMD_IDE;
break;
}
E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
return (0);
#endif
}
static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
{
#ifndef __HAIKU__
struct e1000_softc *sc;
u32 reg, val, shift;
int error, mask;
sc = oidp->oid_arg1;
switch (oidp->oid_arg2) {
case 0:
reg = E1000_DTXTCPFLGL;
shift = 0;
break;
case 1:
reg = E1000_DTXTCPFLGL;
shift = 16;
break;
case 2:
reg = E1000_DTXTCPFLGH;
shift = 0;
break;
default:
return (EINVAL);
break;
}
val = E1000_READ_REG(&sc->hw, reg);
mask = (val >> shift) & 0xfff;
error = sysctl_handle_int(oidp, &mask, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (mask < 0 || mask > 0xfff)
return (EINVAL);
val = (val & ~(0xfff << shift)) | (mask << shift);
E1000_WRITE_REG(&sc->hw, reg, val);
return (0);
#endif
}
static void
em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
const char *description, struct em_int_delay_info *info, int offset,
int value)
{
info->sc = sc;
info->offset = offset;
info->value = value;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
info, 0, em_sysctl_int_delay, "I", description);
}
* Set flow control using sysctl:
* Flow control values:
* 0 - off
* 1 - rx pause
* 2 - tx pause
* 3 - full
*/
static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)
{
int error;
static int input = 3;
struct e1000_softc *sc = (struct e1000_softc *) arg1;
error = sysctl_handle_int(oidp, &input, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (input == sc->fc)
return (error);
switch (input) {
case e1000_fc_rx_pause:
case e1000_fc_tx_pause:
case e1000_fc_full:
case e1000_fc_none:
sc->hw.fc.requested_mode = input;
sc->fc = input;
break;
default:
return (error);
}
sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
e1000_force_mac_fc(&sc->hw);
return (error);
}
* Manage DMA Coalesce:
* Control values:
* 0/1 - off/on
* Legal timer values are:
* 250,500,1000-10000 in thousands
*/
static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc = (struct e1000_softc *) arg1;
int error;
error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
switch (sc->dmac) {
case 0:
break;
case 1:
sc->dmac = 1000;
break;
case 250:
case 500:
case 1000:
case 2000:
case 3000:
case 4000:
case 5000:
case 6000:
case 7000:
case 8000:
case 9000:
case 10000:
break;
default:
sc->dmac = 0;
return (EINVAL);
}
em_if_init(sc->ctx);
return (error);
}
* Manage Energy Efficient Ethernet:
* Control values:
* 0/1 - enabled/disabled
*/
static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc = (struct e1000_softc *) arg1;
int error, value;
if (sc->hw.mac.type < igb_mac_min)
value = sc->hw.dev_spec.ich8lan.eee_disable;
else
value = sc->hw.dev_spec._82575.eee_disable;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (sc->hw.mac.type < igb_mac_min)
sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
else
sc->hw.dev_spec._82575.eee_disable = (value != 0);
em_if_init(sc->ctx);
return (0);
}
static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct e1000_softc *) arg1;
em_print_debug_info(sc);
}
return (error);
}
static int
em_get_rs(SYSCTL_HANDLER_ARGS)
{
struct e1000_softc *sc = (struct e1000_softc *) arg1;
int error;
int result;
result = 0;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr || result != 1)
return (error);
em_dump_rs(sc);
return (error);
}
static void
em_if_debug(if_ctx_t ctx)
{
em_dump_rs(iflib_get_softc(ctx));
}
* This routine is meant to be fluid, add whatever is
* needed for debugging a problem. -jfv
*/
static void
em_print_debug_info(struct e1000_softc *sc)
{
device_t dev = iflib_get_dev(sc->ctx);
if_t ifp = iflib_get_ifp(sc->ctx);
struct tx_ring *txr = &sc->tx_queues->txr;
struct rx_ring *rxr = &sc->rx_queues->rxr;
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
printf("Interface is RUNNING ");
else
printf("Interface is NOT RUNNING\n");
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
printf("and INACTIVE\n");
else
printf("and ACTIVE\n");
for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
device_printf(dev, "TX Queue %d ------\n", i);
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
E1000_READ_REG(&sc->hw, E1000_TDH(i)),
E1000_READ_REG(&sc->hw, E1000_TDT(i)));
}
for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
device_printf(dev, "RX Queue %d ------\n", j);
device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
E1000_READ_REG(&sc->hw, E1000_RDH(j)),
E1000_READ_REG(&sc->hw, E1000_RDT(j)));
}
}
* 82574 only:
* Write a new value to the EEPROM increasing the number of MSI-X
* vectors from 3 to 5, for proper multiqueue support.
*/
static void
em_enable_vectors_82574(if_ctx_t ctx)
{
struct e1000_softc *sc = iflib_get_softc(ctx);
struct e1000_hw *hw = &sc->hw;
device_t dev = iflib_get_dev(ctx);
u16 edata;
e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
if (bootverbose)
device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
device_printf(dev, "Writing to eeprom: increasing "
"reported MSI-X vectors from 3 to 5...\n");
edata &= ~(EM_NVM_MSIX_N_MASK);
edata |= 4 << EM_NVM_MSIX_N_SHIFT;
e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
e1000_update_nvm_checksum(hw);
device_printf(dev, "Writing to eeprom: done\n");
}
}