* Driver for USB Audio Device Class devices.
* Copyright (c) 2009-13 S.Zharski <imker@gmx.li>
* Distributed under the terms of the MIT license.
*/
#include "Stream.h"
#include <kernel.h>
#include <usb/USB_audio.h>
#include "Device.h"
#include "Driver.h"
#include "Settings.h"
Stream::Stream(Device* device, size_t interface, usb_interface_list* List)
:
AudioStreamingInterface(&device->AudioControl(), interface, List),
fDevice(device),
fStatus(B_NO_INIT),
fStreamEndpoint(0),
fIsRunning(false),
fArea(-1),
fKernelArea(-1),
fAreaSize(0),
fDescriptors(NULL),
fDescriptorsCount(0),
fCurrentBuffer(0),
fSamplesCount(0),
fRealTime(0),
fStartingFrame(0),
fProcessedBuffers(0),
fInsideNotify(0)
{
}
Stream::~Stream()
{
delete_area(fArea);
delete_area(fKernelArea);
delete fDescriptors;
}
status_t
Stream::_ChooseAlternate()
{
uint16 maxChxRes = 0;
for (int i = 0; i < fAlternates.Count(); i++) {
if (fAlternates[i]->Interface() == 0) {
TRACE(INF, "Ignore alternate %d - zero interface description.\n", i);
continue;
}
if (fAlternates[i]->Format() == 0) {
TRACE(INF, "Ignore alternate %d - zero format description.\n", i);
continue;
}
if (fAlternates[i]->Format()->fFormatType
!= USB_AUDIO_FORMAT_TYPE_I) {
TRACE(ERR, "Ignore alternate %d - format type %#02x "
"is not supported.\n", i, fAlternates[i]->Format()->fFormatType);
continue;
}
switch (fAlternates[i]->Interface()->fFormatTag) {
case USB_AUDIO_FORMAT_PCM:
case USB_AUDIO_FORMAT_PCM8:
case USB_AUDIO_FORMAT_IEEE_FLOAT:
break;
default:
TRACE(ERR, "Ignore alternate %d - format %#04x is not "
"supported.\n", i, fAlternates[i]->Interface()->fFormatTag);
continue;
}
TypeIFormatDescriptor* format
= static_cast<TypeIFormatDescriptor*>(fAlternates[i]->Format());
if (format->fNumChannels > 2) {
TRACE(ERR, "Ignore alternate %d - channel count %d "
"is not supported.\n", i, format->fNumChannels);
continue;
}
if (fAlternates[i]->Interface()->fFormatTag == USB_AUDIO_FORMAT_PCM) {
switch(format->fBitResolution) {
default:
TRACE(ERR, "Ignore alternate %d - bit resolution %d "
"is not supported.\n", i, format->fBitResolution);
continue;
case 8: case 16: case 18: case 20: case 24: case 32:
break;
}
}
uint16 chxRes = format->fNumChannels * 100 + format->fBitResolution;
if (chxRes > maxChxRes) {
maxChxRes = chxRes;
fActiveAlternate = i;
}
}
if (maxChxRes <= 0) {
TRACE(ERR, "No compatible alternate found. "
"Stream initialization failed.\n");
return B_NO_INIT;
}
const ASEndpointDescriptor* endpoint
= fAlternates[fActiveAlternate]->Endpoint();
fIsInput = (endpoint->fEndpointAddress & USB_ENDPOINT_ADDR_DIR_IN)
== USB_ENDPOINT_ADDR_DIR_IN;
if (fIsInput)
fCurrentBuffer = (size_t)-1;
TRACE(INF, "Alternate %d EP:%x selected for %s!\n",
fActiveAlternate, endpoint->fEndpointAddress,
fIsInput ? "recording" : "playback");
return B_OK;
}
status_t
Stream::Init()
{
fStatus = _ChooseAlternate();
return fStatus;
}
void
Stream::OnRemove()
{
while (atomic_get(&fInsideNotify) != 0)
snooze(100);
gUSBModule->cancel_queued_transfers(fStreamEndpoint);
}
status_t
Stream::_SetupBuffers()
{
TypeIFormatDescriptor* format = static_cast<TypeIFormatDescriptor*>(
fAlternates[fActiveAlternate]->Format());
uint32 samplingRate = fAlternates[fActiveAlternate]->GetSamplingRate();
uint32 sampleSize = format->fNumChannels * format->fSubframeSize;
size_t packetSize = samplingRate * sampleSize
/ (fDevice->fUSBVersion < 0x0200 ? 1000 : 8000);
TRACE(INF, "packetSize:%ld\n", packetSize);
if (packetSize == 0) {
TRACE(ERR, "computed packet size is 0!");
return B_BAD_VALUE;
}
if (fArea != -1) {
Stop();
delete_area(fArea);
delete_area(fKernelArea);
delete fDescriptors;
}
fAreaSize = sampleSize * kSamplesBufferSize * kSamplesBufferCount;
TRACE(INF, "estimate fAreaSize:%d\n", fAreaSize);
fAreaSize = (fAreaSize + (B_PAGE_SIZE - 1)) &~ (B_PAGE_SIZE - 1);
TRACE(INF, "rounded up fAreaSize:%d\n", fAreaSize);
fArea = create_area(fIsInput ? DRIVER_NAME "_record_area"
: DRIVER_NAME "_playback_area", (void**)&fBuffers,
B_ANY_ADDRESS, fAreaSize, B_NO_LOCK,
B_READ_AREA | B_WRITE_AREA);
if (fArea < 0) {
TRACE(ERR, "Error of creating %#x - "
"bytes size buffer area:%#010x\n", fAreaSize, fArea);
fStatus = fArea;
return fStatus;
}
fKernelArea = clone_area("usb_audio cloned area", (void**)&fKernelBuffers,
B_ANY_ADDRESS, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, fArea);
if (fKernelArea < 0) {
fStatus = fKernelArea;
return fStatus;
}
TRACE(INF, "Created area id:%d at addr:%#010x size:%#010lx\n",
fArea, fDescriptors, fAreaSize);
fDescriptorsCount = fAreaSize / packetSize;
fDescriptorsCount = ROUNDDOWN(fDescriptorsCount, kSamplesBufferCount);
fDescriptors = new usb_iso_packet_descriptor[fDescriptorsCount];
TRACE(INF, "descriptorsCount:%d\n", fDescriptorsCount);
fSamplesCount = fDescriptorsCount * packetSize / sampleSize;
TRACE(INF, "samplesCount:%d\n", fSamplesCount);
for (size_t i = 0; i < fDescriptorsCount; i++) {
fDescriptors[i].request_length = packetSize;
fDescriptors[i].actual_length = 0;
fDescriptors[i].status = B_OK;
}
return fStatus;
}
status_t
Stream::OnSetConfiguration(usb_device device,
const usb_configuration_info* config)
{
if (config == NULL) {
TRACE(ERR, "NULL configuration. Not set.\n");
return B_ERROR;
}
usb_interface_info* interface
= &config->interface[fInterface].alt[fActiveAlternate];
if (interface == NULL) {
TRACE(ERR, "NULL interface. Not set.\n");
return B_ERROR;
}
status_t status = gUSBModule->set_alt_interface(device, interface);
uint8 address = fAlternates[fActiveAlternate]->Endpoint()->fEndpointAddress;
TRACE(INF, "set_alt_interface %x\n", status);
for (size_t i = 0; i < interface->endpoint_count; i++) {
if (address == interface->endpoint[i].descr->endpoint_address) {
fStreamEndpoint = interface->endpoint[i].handle;
TRACE(INF, "%s Stream Endpoint [address %#04x] handle is: %#010x.\n",
fIsInput ? "Input" : "Output", address, fStreamEndpoint);
return B_OK;
}
}
TRACE(INF, "%s Stream Endpoint [address %#04x] was not found.\n",
fIsInput ? "Input" : "Output", address);
return B_ERROR;
}
status_t
Stream::Start()
{
status_t result = B_BUSY;
if (!fIsRunning) {
for (size_t i = 0; i < kSamplesBufferCount; i++)
result = _QueueNextTransfer(i, i == 0);
fIsRunning = result == B_OK;
}
return result;
}
status_t
Stream::Stop()
{
if (fIsRunning) {
while (atomic_get(&fInsideNotify) != 0)
snooze(100);
fIsRunning = false;
}
gUSBModule->cancel_queued_transfers(fStreamEndpoint);
return B_OK;
}
status_t
Stream::_QueueNextTransfer(size_t queuedBuffer, bool start)
{
TypeIFormatDescriptor* format = static_cast<TypeIFormatDescriptor*>(
fAlternates[fActiveAlternate]->Format());
size_t bufferSize = format->fNumChannels * format->fSubframeSize;
bufferSize *= fSamplesCount / kSamplesBufferCount;
size_t packetsCount = fDescriptorsCount / kSamplesBufferCount;
TRACE(DTA, "buffers:%#010x[%#x]\ndescrs:%#010x[%#x]\n",
fKernelBuffers + bufferSize * queuedBuffer, bufferSize,
fDescriptors + queuedBuffer * packetsCount, packetsCount);
status_t status = gUSBModule->queue_isochronous(fStreamEndpoint,
fKernelBuffers + bufferSize * queuedBuffer, bufferSize,
fDescriptors + queuedBuffer * packetsCount, packetsCount,
&fStartingFrame, USB_ISO_ASAP,
Stream::_TransferCallback, this);
TRACE(DTA, "frame:%#010x\n", fStartingFrame);
return status;
}
void
Stream::_TransferCallback(void* cookie, status_t status, void* data,
size_t actualLength)
{
Stream* stream = (Stream*)cookie;
TRACE(status == B_OK ? DTA : ERR,
"stream:%010x: status:%#010x, data:%#010x, len:%d\n",
stream->fStreamEndpoint, status, data, actualLength);
atomic_add(&stream->fInsideNotify, 1);
if (status == B_CANCELED || stream->fDevice->fRemoved || !stream->fIsRunning) {
TRACE(ERR, "Cancelled: c:%p st:%#010x, data:%#010x, len:%d\n",
cookie, status, data, actualLength);
atomic_add(&stream->fInsideNotify, -1);
return;
}
#if 0
stream->_DumpDescriptors();
#endif
if (atomic_add(&stream->fProcessedBuffers, 1) > (int32)kSamplesBufferCount)
TRACE(ERR, "Processed buffers overflow:%d\n", stream->fProcessedBuffers);
stream->fRealTime = system_time();
release_sem_etc(stream->fDevice->fBuffersReadySem, 1, B_DO_NOT_RESCHEDULE);
stream->fCurrentBuffer = (stream->fCurrentBuffer + 1) % kSamplesBufferCount;
status = stream->_QueueNextTransfer(stream->fCurrentBuffer, false);
atomic_add(&stream->fInsideNotify, -1);
}
void
Stream::_DumpDescriptors()
{
for (size_t i = 0; i < fDescriptorsCount; i++)
TRACE(ISO, "%d:req_len:%d; act_len:%d; stat:%#010x\n", i,
fDescriptors[i].request_length, fDescriptors[i].actual_length,
fDescriptors[i].status);
}
status_t
Stream::GetEnabledChannels(uint32& offset, multi_channel_enable* Enable)
{
AudioChannelCluster* cluster = ChannelCluster();
if (cluster == 0)
return B_ERROR;
for (size_t i = 0; i < cluster->ChannelsCount(); i++) {
B_SET_CHANNEL(Enable->enable_bits, offset++, true);
TRACE(INF, "Report channel %d as enabled.\n", offset);
}
return B_OK;
}
status_t
Stream::SetEnabledChannels(uint32& offset, multi_channel_enable* Enable)
{
AudioChannelCluster* cluster = ChannelCluster();
if (cluster == 0)
return B_ERROR;
for (size_t i = 0; i < cluster->ChannelsCount(); i++, offset++) {
TRACE(INF, "%s channel %d.\n",
(B_TEST_CHANNEL(Enable->enable_bits, offset)
? "Enable" : "Disable"), offset + 1);
}
return B_OK;
}
status_t
Stream::GetGlobalFormat(multi_format_info* Format)
{
_multi_format* format = fIsInput ? &Format->input : &Format->output;
format->cvsr = fAlternates[fActiveAlternate]->GetSamplingRate();
format->rate = fAlternates[fActiveAlternate]->GetSamplingRateId(0);
format->format = fAlternates[fActiveAlternate]->GetFormatId();
TRACE(INF, "%s.rate:%d cvsr:%f format:%#08x\n",
fIsInput ? "input" : "ouput",
format->rate, format->cvsr, format->format);
return B_OK;
}
status_t
Stream::SetGlobalFormat(multi_format_info* Format)
{
_multi_format* format = fIsInput ? &Format->input : &Format->output;
AudioStreamAlternate* alternate = fAlternates[fActiveAlternate];
if (format->rate == alternate->GetSamplingRateId(0)
&& format->format == alternate->GetFormatId()) {
TRACE(INF, "No changes required\n");
return B_OK;
}
alternate->SetSamplingRateById(format->rate);
alternate->SetFormatId(format->format);
TRACE(INF, "%s.rate:%d cvsr:%f format:%#08x\n",
fIsInput ? "input" : "ouput",
format->rate, format->cvsr, format->format);
Stop();
status_t status = _SetupBuffers();
if (status != B_OK)
return status;
uint32 samplingRate = fAlternates[fActiveAlternate]->GetSamplingRate();
size_t actualLength = 0;
usb_audio_sampling_freq freq = _ASFormatDescriptor::GetSamFreq(samplingRate);
uint8 address = fAlternates[fActiveAlternate]->Endpoint()->fEndpointAddress;
status = gUSBModule->send_request(fDevice->fDevice,
USB_REQTYPE_CLASS | USB_REQTYPE_ENDPOINT_OUT,
USB_AUDIO_SET_CUR, USB_AUDIO_SAMPLING_FREQ_CONTROL << 8,
address, sizeof(freq), &freq, &actualLength);
TRACE(ERR, "set_speed %02x%02x%02x for ep %#x %d: %s\n",
freq.bytes[0], freq.bytes[1], freq.bytes[2],
address, actualLength, strerror(status));
return status;
}
status_t
Stream::GetBuffers(multi_buffer_list* List)
{
if (fAreaSize == 0)
return B_NO_INIT;
int32 startChannel = List->return_playback_channels;
buffer_desc** Buffers = List->playback_buffers;
if (fIsInput) {
List->flags |= B_MULTI_BUFFER_RECORD;
List->return_record_buffer_size = fSamplesCount / kSamplesBufferCount;
List->return_record_buffers = kSamplesBufferCount;
startChannel = List->return_record_channels;
Buffers = List->record_buffers;
TRACE(DTA, "flags:%#10x\nreturn_record_buffer_size:%#010x\n"
"return_record_buffers:%#010x\n", List->flags,
List->return_record_buffer_size, List->return_record_buffers);
} else {
List->flags |= B_MULTI_BUFFER_PLAYBACK;
List->return_playback_buffer_size = fSamplesCount / kSamplesBufferCount;
List->return_playback_buffers = kSamplesBufferCount;
TRACE(DTA, "flags:%#10x\nreturn_playback_buffer_size:%#010x\n"
"return_playback_buffers:%#010x\n", List->flags,
List->return_playback_buffer_size, List->return_playback_buffers);
}
TypeIFormatDescriptor* format = static_cast<TypeIFormatDescriptor*>(
fAlternates[fActiveAlternate]->Format());
for (size_t buffer = 0; buffer < kSamplesBufferCount; buffer++) {
TRACE(DTA, "%s buffer #%d:\n", fIsInput ? "input" : "output", buffer + 1);
struct buffer_desc descs[format->fNumChannels];
for (size_t channel = startChannel;
channel < format->fNumChannels; channel++) {
uint32 stride = format->fSubframeSize * format->fNumChannels;
descs[channel].stride = stride;
size_t bufferSize = (fSamplesCount / kSamplesBufferCount) * stride;
descs[channel].base = (char*)fBuffers;
descs[channel].base += buffer * bufferSize;
descs[channel].base += channel * format->fSubframeSize;
TRACE(DTA, "%d:%d: base:%#010x; stride:%#010x\n", buffer, channel,
descs[channel].base, descs[channel].stride);
}
if (!IS_USER_ADDRESS(Buffers[buffer])
|| user_memcpy(Buffers[buffer], descs, sizeof(descs)) < B_OK) {
return B_BAD_ADDRESS;
}
}
if (fIsInput) {
List->return_record_channels += format->fNumChannels;
TRACE(MIX, "return_record_channels:%#010x\n",
List->return_record_channels);
} else {
List->return_playback_channels += format->fNumChannels;
TRACE(MIX, "return_playback_channels:%#010x\n",
List->return_playback_channels);
}
return B_OK;
}
bool
Stream::ExchangeBuffer(multi_buffer_info* Info)
{
if (atomic_get(&fProcessedBuffers) <= 0)
return false;
if (fIsInput) {
Info->recorded_real_time = fRealTime;
Info->recorded_frames_count += fSamplesCount / kSamplesBufferCount;
Info->record_buffer_cycle = fCurrentBuffer;
} else {
Info->played_real_time = fRealTime;
Info->played_frames_count += fSamplesCount / kSamplesBufferCount;
Info->playback_buffer_cycle = fCurrentBuffer;
}
atomic_add(&fProcessedBuffers, -1);
return true;
}