* Single-precision e^x function.
*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "exp2f_data.h"
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
ULP error: 0.502 (nearest rounding.)
Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
Wrong count: 170635 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define InvLn2N __exp2f_data.invln2_scaled
#define T __exp2f_data.tab
#define C __exp2f_data.poly_scaled
static inline uint32_t top12(float x)
{
return asuint(x) >> 20;
}
float expf(float x)
{
uint32_t abstop;
uint64_t ki, t;
double_t kd, xd, z, r, r2, y, s;
xd = (double_t)x;
abstop = top12(x) & 0x7ff;
if (predict_false(abstop >= top12(88.0f))) {
if (asuint(x) == asuint(-INFINITY))
return 0.0f;
if (abstop >= top12(INFINITY))
return x + x;
if (x > 0x1.62e42ep6f)
return __math_oflowf(0);
if (x < -0x1.9fe368p6f)
return __math_uflowf(0);
}
z = InvLn2N * xd;
ideally ties-to-even rule is used, otherwise the magnitude of r
can be bigger which gives larger approximation error. */
#if TOINT_INTRINSICS
kd = roundtoint(z);
ki = converttoint(z);
#else
# define SHIFT __exp2f_data.shift
kd = eval_as_double(z + SHIFT);
ki = asuint64(kd);
kd -= SHIFT;
#endif
r = z - kd;
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble(t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return eval_as_float(y);
}