⛏️ index : haiku.git

/*
 * Copyright 2011-2015, Haiku, Inc. All Rights Reserved.
 * Distributed under the terms of the MIT License.
 *
 * Authors:
 *		Michael Lotz, mmlr@mlotz.ch
 *		Alexander von Gluck IV, kallisti5@unixzen.com
 */


#include "FlexibleDisplayInterface.h"

#include <stdlib.h>
#include <string.h>
#include <Debug.h>
#include <KernelExport.h>

#include "accelerant.h"
#include "intel_extreme.h"


#undef TRACE
#define TRACE_FDI
#ifdef TRACE_FDI
#   define TRACE(x...) _sPrintf("intel_extreme: " x)
#else
#   define TRACE(x...)
#endif

#define ERROR(x...) _sPrintf("intel_extreme: " x)
#define CALLED() TRACE("CALLED %s\n", __PRETTY_FUNCTION__)


static const int gSnbBFDITrainParam[] = {
	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};


// #pragma mark - FDITransmitter


FDITransmitter::FDITransmitter(pipe_index pipeIndex)
	:
	fRegisterBase(PCH_FDI_TX_BASE_REGISTER)
{
	if (pipeIndex == INTEL_PIPE_B)
		fRegisterBase += PCH_FDI_TX_PIPE_OFFSET * 1;
}


FDITransmitter::~FDITransmitter()
{
}


void
FDITransmitter::Enable()
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_TX_CONTROL;
	uint32 value = read32(targetRegister);

	write32(targetRegister, value | FDI_TX_ENABLE);
	read32(targetRegister);
	spin(150);
}


void
FDITransmitter::Disable()
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_TX_CONTROL;
	uint32 value = read32(targetRegister);

	write32(targetRegister, value & ~FDI_TX_ENABLE);
	read32(targetRegister);
	spin(150);
}


bool
FDITransmitter::IsPLLEnabled()
{
	CALLED();
	return (read32(fRegisterBase + PCH_FDI_TX_CONTROL) & FDI_TX_PLL_ENABLED)
		!= 0;
}


void
FDITransmitter::EnablePLL(uint32 lanes)
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_TX_CONTROL;
	uint32 value = read32(targetRegister);
	if ((value & FDI_TX_PLL_ENABLED) != 0) {
		// already enabled, possibly IronLake where it always is
		TRACE("%s: Already enabled.\n", __func__);
		return;
	}

	write32(targetRegister, value | FDI_TX_PLL_ENABLED);
	read32(targetRegister);
	spin(100); // warmup 10us + dmi delay 20us, be generous
}


void
FDITransmitter::DisablePLL()
{
	CALLED();
	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_ILK)) {
		// on IronLake the FDI PLL is alaways enabled, so no point in trying...
		return;
	}

	uint32 targetRegister = fRegisterBase + PCH_FDI_TX_CONTROL;
	write32(targetRegister, read32(targetRegister) & ~FDI_TX_PLL_ENABLED);
	read32(targetRegister);
	spin(100);
}


// #pragma mark - FDIReceiver


FDIReceiver::FDIReceiver(pipe_index pipeIndex)
	:
	fRegisterBase(PCH_FDI_RX_BASE_REGISTER)
{
	if (pipeIndex == INTEL_PIPE_B)
		fRegisterBase += PCH_FDI_RX_PIPE_OFFSET * 1;
}


FDIReceiver::~FDIReceiver()
{
}


void
FDIReceiver::Enable()
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_RX_CONTROL;
	uint32 value = read32(targetRegister);

	write32(targetRegister, value | FDI_RX_ENABLE);
	read32(targetRegister);
	spin(150);
}


void
FDIReceiver::Disable()
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_RX_CONTROL;
	uint32 value = read32(targetRegister);

	write32(targetRegister, value & ~FDI_RX_ENABLE);
	read32(targetRegister);
	spin(150);
}


bool
FDIReceiver::IsPLLEnabled()
{
	CALLED();
	return (read32(fRegisterBase + PCH_FDI_RX_CONTROL) & FDI_RX_PLL_ENABLED)
		!= 0;
}


void
FDIReceiver::EnablePLL(uint32 lanes)
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_RX_CONTROL;
	uint32 value = read32(targetRegister);
	if ((value & FDI_RX_PLL_ENABLED) != 0) {
		// already enabled, possibly IronLake where it always is
		TRACE("%s: Already enabled.\n", __func__);
		return;
	}

	value &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
	value |= FDI_DP_PORT_WIDTH(lanes);
	//value |= (read32(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;

	write32(targetRegister, value | FDI_RX_PLL_ENABLED);
	read32(targetRegister);
	spin(200); // warmup 10us + dmi delay 20us, be generous
}


void
FDIReceiver::DisablePLL()
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_RX_CONTROL;
	write32(targetRegister, read32(targetRegister) & ~FDI_RX_PLL_ENABLED);
	read32(targetRegister);
	spin(100);
}


void
FDIReceiver::SwitchClock(bool toPCDClock)
{
	CALLED();
	uint32 targetRegister = fRegisterBase + PCH_FDI_RX_CONTROL;
	write32(targetRegister, (read32(targetRegister) & ~FDI_RX_CLOCK_MASK)
		| (toPCDClock ? FDI_RX_CLOCK_PCD : FDI_RX_CLOCK_RAW));
	read32(targetRegister);
	spin(200);
}


// #pragma mark - FDILink


FDILink::FDILink(pipe_index pipeIndex)
	:
	fTransmitter(pipeIndex),
	fReceiver(pipeIndex),
	fPipeIndex(pipeIndex)
{
}


status_t
FDILink::Train(display_mode* target)
{
	CALLED();

	uint32 bitsPerPixel;
	switch (target->space) {
		case B_RGB32_LITTLE:
			bitsPerPixel = 32;
			break;
		case B_RGB16_LITTLE:
			bitsPerPixel = 16;
			break;
		case B_RGB15_LITTLE:
			bitsPerPixel = 15;
			break;
		case B_CMAP8:
		default:
			bitsPerPixel = 8;
			break;
	}

	// Khz / 10. ( each output octet encoded as 10 bits.
	uint32 linkBandwidth = gInfo->shared_info->fdi_link_frequency * 1000 / 10;
	uint32 bps = target->timing.pixel_clock * bitsPerPixel * 21 / 20;

	uint32 lanes = bps / (linkBandwidth * 8);

	TRACE("%s: FDI Link Lanes: %" B_PRIu32 "\n", __func__, lanes);

	// Enable FDI clocks
	Receiver().EnablePLL(lanes);
	Receiver().SwitchClock(true);
	Transmitter().EnablePLL(lanes);

	status_t result = B_ERROR;

	// TODO: Only _AutoTrain on IVYB Stepping B or later
	// otherwise, _ManualTrain
	if (gInfo->shared_info->device_type.Generation() >= 7)
		result = _AutoTrain(lanes);
	else if (gInfo->shared_info->device_type.Generation() == 6)
		result = _SnbTrain(lanes);
	else if (gInfo->shared_info->device_type.Generation() == 5)
		result = _IlkTrain(lanes);
	else
		result = _NormalTrain(lanes);

	if (result != B_OK) {
		ERROR("%s: FDI training fault.\n", __func__);
	}

	return result;
}


status_t
FDILink::_NormalTrain(uint32 lanes)
{
	CALLED();
	uint32 txControl = Transmitter().Base() + PCH_FDI_TX_CONTROL;
	uint32 rxControl = Receiver().Base() + PCH_FDI_RX_CONTROL;

	// Enable normal link training
	uint32 tmp = read32(txControl);
	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_IVB)) {
		tmp &= ~FDI_LINK_TRAIN_NONE_IVB;
		tmp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
	} else {
		tmp &= ~FDI_LINK_TRAIN_NONE;
		tmp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
	}
	write32(txControl, tmp);

	tmp = read32(rxControl);
	if (gInfo->shared_info->pch_info == INTEL_PCH_CPT) {
		tmp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		tmp |= FDI_LINK_TRAIN_NORMAL_CPT;
	} else {
		tmp &= ~FDI_LINK_TRAIN_NONE;
		tmp |= FDI_LINK_TRAIN_NONE;
	}
	write32(rxControl, tmp | FDI_RX_ENHANCE_FRAME_ENABLE);

	// Wait 1x idle pattern
	read32(rxControl);
	spin(1000);

	// Enable ecc on IVB
	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_IVB)) {
		write32(rxControl, read32(rxControl)
			| FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
		read32(rxControl);
	}

	return B_OK;
}


status_t
FDILink::_IlkTrain(uint32 lanes)
{
	CALLED();
	uint32 txControl = Transmitter().Base() + PCH_FDI_TX_CONTROL;
	uint32 rxControl = Receiver().Base() + PCH_FDI_RX_CONTROL;

	// Train 1: unmask FDI RX Interrupt symbol_lock and bit_lock
	uint32 tmp = read32(Receiver().Base() + PCH_FDI_RX_IMR);
	tmp &= ~FDI_RX_SYMBOL_LOCK;
	tmp &= ~FDI_RX_BIT_LOCK;
	write32(Receiver().Base() + PCH_FDI_RX_IMR, tmp);
	spin(150);

	// Enable CPU FDI TX and RX
	tmp = read32(txControl);
	tmp &= ~FDI_DP_PORT_WIDTH_MASK;
	tmp |= FDI_DP_PORT_WIDTH(lanes);
	tmp &= ~FDI_LINK_TRAIN_NONE;
	tmp |= FDI_LINK_TRAIN_PATTERN_1;
	write32(txControl, tmp);
	Transmitter().Enable();

	tmp = read32(rxControl);
	tmp &= ~FDI_LINK_TRAIN_NONE;
	tmp |= FDI_LINK_TRAIN_PATTERN_1;
	write32(rxControl, tmp);
	Receiver().Enable();

	// ILK Workaround, enable clk after FDI enable
	if (fPipeIndex == INTEL_PIPE_B) {
		write32(PCH_FDI_RXB_CHICKEN, FDI_RX_PHASE_SYNC_POINTER_OVR);
		write32(PCH_FDI_RXB_CHICKEN, FDI_RX_PHASE_SYNC_POINTER_OVR
			| FDI_RX_PHASE_SYNC_POINTER_EN);
	} else {
		write32(PCH_FDI_RXA_CHICKEN, FDI_RX_PHASE_SYNC_POINTER_OVR);
		write32(PCH_FDI_RXA_CHICKEN, FDI_RX_PHASE_SYNC_POINTER_OVR
			| FDI_RX_PHASE_SYNC_POINTER_EN);
	}

	uint32 iirControl = Receiver().Base() + PCH_FDI_RX_IIR;
	TRACE("%s: FDI RX IIR Control @ 0x%" B_PRIx32 "\n", __func__, iirControl);

	int tries = 0;
	for (tries = 0; tries < 5; tries++) {
		tmp = read32(iirControl);
		TRACE("%s: FDI RX IIR 0x%" B_PRIx32 "\n", __func__, tmp);

		if ((tmp & FDI_RX_BIT_LOCK)) {
			TRACE("%s: FDI train 1 done\n", __func__);
			write32(iirControl, tmp | FDI_RX_BIT_LOCK);
			break;
		}
	}

	if (tries == 5) {
		ERROR("%s: FDI train 1 failure!\n", __func__);
		return B_ERROR;
	}

	// Train 2
	tmp = read32(txControl);
	tmp &= ~FDI_LINK_TRAIN_NONE;
	tmp |= FDI_LINK_TRAIN_PATTERN_2;
	write32(txControl, tmp);

	tmp = read32(rxControl);
	tmp &= ~FDI_LINK_TRAIN_NONE;
	tmp |= FDI_LINK_TRAIN_PATTERN_2;
	write32(rxControl, tmp);

	read32(rxControl);
	spin(150);

	for (tries = 0; tries < 5; tries++) {
		tmp = read32(iirControl);
		TRACE("%s: FDI RX IIR 0x%" B_PRIx32 "\n", __func__, tmp);

		if (tmp & FDI_RX_SYMBOL_LOCK) {
			TRACE("%s: FDI train 2 done\n", __func__);
			write32(iirControl, tmp | FDI_RX_SYMBOL_LOCK);
			break;
		}
	}

	if (tries == 5) {
		ERROR("%s: FDI train 2 failure!\n", __func__);
		return B_ERROR;
	}

	return B_OK;
}


status_t
FDILink::_SnbTrain(uint32 lanes)
{
	CALLED();
	uint32 txControl = Transmitter().Base() + PCH_FDI_TX_CONTROL;
	uint32 rxControl = Receiver().Base() + PCH_FDI_RX_CONTROL;

	// Train 1
	uint32 imrControl = Receiver().Base() + PCH_FDI_RX_IMR;
	uint32 tmp = read32(imrControl);
	tmp &= ~FDI_RX_SYMBOL_LOCK;
	tmp &= ~FDI_RX_BIT_LOCK;
	write32(imrControl, tmp);
	read32(imrControl);
	spin(150);

	tmp = read32(txControl);
	tmp &= ~FDI_DP_PORT_WIDTH_MASK;
	tmp |= FDI_DP_PORT_WIDTH(lanes);
	tmp &= ~FDI_LINK_TRAIN_NONE;
	tmp |= FDI_LINK_TRAIN_PATTERN_1;
	tmp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;

	tmp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
	write32(txControl, tmp);

	write32(Receiver().Base() + PCH_FDI_RX_MISC,
		FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	tmp = read32(rxControl);
	if (gInfo->shared_info->pch_info == INTEL_PCH_CPT) {
		tmp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		tmp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
	} else {
		tmp &= ~FDI_LINK_TRAIN_NONE;
		tmp |= FDI_LINK_TRAIN_PATTERN_1;
	}
	write32(rxControl, rxControl);
	Receiver().Enable();

	uint32 iirControl = Receiver().Base() + PCH_FDI_RX_IIR;
	TRACE("%s: FDI RX IIR Control @ 0x%" B_PRIx32 "\n", __func__, iirControl);

	int i = 0;
	for (i = 0; i < 4; i++) {
		tmp = read32(txControl);
		tmp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
		tmp |= gSnbBFDITrainParam[i];
		write32(txControl, tmp);

		read32(txControl);
		spin(500);

		int retry = 0;
		for (retry = 0; retry < 5; retry++) {
			tmp = read32(iirControl);
			TRACE("%s: FDI RX IIR 0x%" B_PRIx32 "\n", __func__, tmp);
			if (tmp & FDI_RX_BIT_LOCK) {
				TRACE("%s: FDI train 1 done\n", __func__);
				write32(iirControl, tmp | FDI_RX_BIT_LOCK);
				break;
			}
			spin(50);
		}
		if (retry < 5)
			break;
	}

	if (i == 4) {
		ERROR("%s: FDI train 1 failure!\n", __func__);
		return B_ERROR;
	}

	// Train 2
	tmp = read32(txControl);
	tmp &= ~FDI_LINK_TRAIN_NONE;
	tmp |= FDI_LINK_TRAIN_PATTERN_2;

	// if gen6? It's always gen6
	tmp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
	tmp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
	write32(txControl, tmp);

	tmp = read32(rxControl);
	if (gInfo->shared_info->pch_info == INTEL_PCH_CPT) {
		tmp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		tmp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
	} else {
		tmp &= ~FDI_LINK_TRAIN_NONE;
		tmp |= FDI_LINK_TRAIN_PATTERN_2;
	}
	write32(rxControl, tmp);

	read32(rxControl);
	spin(150);

	for (i = 0; i < 4; i++) {
		tmp = read32(txControl);
		tmp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
		tmp |= gSnbBFDITrainParam[i];
		write32(txControl, tmp);

		read32(txControl);
		spin(500);

		int retry = 0;
		for (retry = 0; retry < 5; retry++) {
			tmp = read32(iirControl);
			TRACE("%s: FDI RX IIR 0x%" B_PRIx32 "\n", __func__, tmp);

			if (tmp & FDI_RX_SYMBOL_LOCK) {
				TRACE("%s: FDI train 2 done\n", __func__);
				write32(iirControl, tmp | FDI_RX_SYMBOL_LOCK);
				break;
			}
			spin(50);
		}
		if (retry < 5)
			break;
	}

	if (i == 4) {
		ERROR("%s: FDI train 1 failure!\n", __func__);
		return B_ERROR;
	}

	return B_OK;
}


status_t
FDILink::_ManualTrain(uint32 lanes)
{
	CALLED();
	//uint32 txControl = Transmitter().Base() + PCH_FDI_TX_CONTROL;
	//uint32 rxControl = Receiver().Base() + PCH_FDI_RX_CONTROL;

	ERROR("%s: TODO\n", __func__);

	return B_ERROR;
}


status_t
FDILink::_AutoTrain(uint32 lanes)
{
	CALLED();
	uint32 txControl = Transmitter().Base() + PCH_FDI_TX_CONTROL;
	uint32 rxControl = Receiver().Base() + PCH_FDI_RX_CONTROL;

	uint32 buffer = read32(txControl);

	// Clear port width selection and set number of lanes
	buffer &= ~(7 << 19);
	buffer |= (lanes - 1) << 19;

	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_IVB))
		buffer &= ~FDI_LINK_TRAIN_NONE_IVB;
	else
		buffer &= ~FDI_LINK_TRAIN_NONE;
	write32(txControl, buffer);

	bool trained = false;

	for (uint32 i = 0; i < (sizeof(gSnbBFDITrainParam)
		/ sizeof(gSnbBFDITrainParam[0])); i++) {
		for (int j = 0; j < 2; j++) {
			buffer = read32(txControl);
			buffer |= FDI_AUTO_TRAINING;
			buffer &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
			buffer |= gSnbBFDITrainParam[i];
			write32(txControl, buffer | FDI_TX_ENABLE);

			write32(rxControl, read32(rxControl) | FDI_RX_ENABLE);

			spin(5);

			buffer = read32(txControl);
			if ((buffer & FDI_AUTO_TRAIN_DONE) != 0) {
				TRACE("%s: FDI auto train complete!\n", __func__);
				trained = true;
				break;
			}

			write32(txControl, read32(txControl) & ~FDI_TX_ENABLE);
			write32(rxControl, read32(rxControl) & ~FDI_RX_ENABLE);
			read32(rxControl);

			spin(31);
		}

		// If Trained, we fall out of autotraining
		if (trained)
			break;
	}

	if (!trained) {
		ERROR("%s: FDI auto train failed!\n", __func__);
		return B_ERROR;
	}

	// Enable ecc on IVB
	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_IVB)) {
		write32(rxControl, read32(rxControl)
			| FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
		read32(rxControl);
	}

	return B_OK;
}


FDILink::~FDILink()
{
}