* Copyright 2022 Haiku, Inc. All Rights Reserved.
* Distributed under the terms of the MIT License.
*/
#include "VMSAv8TranslationMap.h"
#include <util/AutoLock.h>
#include <util/ThreadAutoLock.h>
#include <vm/vm_page.h>
#include <vm/vm_priv.h>
static constexpr uint64_t kPteAddrMask = (((1UL << 36) - 1) << 12);
static constexpr uint64_t kPteAttrMask = ~(kPteAddrMask | 0x3);
static constexpr uint64_t kAttrSWDBM = (1UL << 55);
static constexpr uint64_t kAttrUXN = (1UL << 54);
static constexpr uint64_t kAttrPXN = (1UL << 53);
static constexpr uint64_t kAttrDBM = (1UL << 51);
static constexpr uint64_t kAttrNG = (1UL << 11);
static constexpr uint64_t kAttrAF = (1UL << 10);
static constexpr uint64_t kAttrSH1 = (1UL << 9);
static constexpr uint64_t kAttrSH0 = (1UL << 8);
static constexpr uint64_t kAttrAP2 = (1UL << 7);
static constexpr uint64_t kAttrAP1 = (1UL << 6);
uint32_t VMSAv8TranslationMap::fHwFeature;
uint64_t VMSAv8TranslationMap::fMair;
VMSAv8TranslationMap::VMSAv8TranslationMap(
bool kernel, phys_addr_t pageTable, int pageBits, int vaBits, int minBlockLevel)
:
fIsKernel(kernel),
fPageTable(pageTable),
fPageBits(pageBits),
fVaBits(vaBits),
fMinBlockLevel(minBlockLevel)
{
dprintf("VMSAv8TranslationMap\n");
fInitialLevel = CalcStartLevel(fVaBits, fPageBits);
}
VMSAv8TranslationMap::~VMSAv8TranslationMap()
{
dprintf("~VMSAv8TranslationMap\n");
}
int
VMSAv8TranslationMap::CalcStartLevel(int vaBits, int pageBits)
{
int level = 4;
int bitsLeft = vaBits - pageBits;
while (bitsLeft > 0) {
int tableBits = pageBits - 3;
bitsLeft -= tableBits;
level--;
}
ASSERT(level >= 0);
return level;
}
bool
VMSAv8TranslationMap::Lock()
{
recursive_lock_lock(&fLock);
return true;
}
void
VMSAv8TranslationMap::Unlock()
{
if (recursive_lock_get_recursion(&fLock) == 1) {
Flush();
}
recursive_lock_unlock(&fLock);
}
addr_t
VMSAv8TranslationMap::MappedSize() const
{
panic("VMSAv8TranslationMap::MappedSize not implemented");
return 0;
}
size_t
VMSAv8TranslationMap::MaxPagesNeededToMap(addr_t start, addr_t end) const
{
size_t result = 0;
size_t size = end - start + 1;
for (int i = fInitialLevel; i < 3; i++) {
int tableBits = fPageBits - 3;
int shift = tableBits * (3 - i) + fPageBits;
uint64_t entrySize = 1UL << shift;
result += size / entrySize + 2;
}
return result;
}
uint64_t*
VMSAv8TranslationMap::TableFromPa(phys_addr_t pa)
{
return reinterpret_cast<uint64_t*>(KERNEL_PMAP_BASE + pa);
}
uint64_t
VMSAv8TranslationMap::MakeBlock(phys_addr_t pa, int level, uint64_t attr)
{
ASSERT(level >= fMinBlockLevel && level < 4);
return pa | attr | (level == 3 ? 0x3 : 0x1);
}
void
VMSAv8TranslationMap::FreeTable(phys_addr_t ptPa, int level)
{
ASSERT(level < 3);
if (level + 1 < 3) {
int tableBits = fPageBits - 3;
uint64_t tableSize = 1UL << tableBits;
uint64_t* pt = TableFromPa(ptPa);
for (uint64_t i = 0; i < tableSize; i++) {
uint64_t pte = pt[i];
if ((pte & 0x3) == 0x3) {
FreeTable(pte & kPteAddrMask, level + 1);
}
}
}
vm_page* page = vm_lookup_page(ptPa >> fPageBits);
vm_page_set_state(page, PAGE_STATE_FREE);
}
phys_addr_t
VMSAv8TranslationMap::MakeTable(
phys_addr_t ptPa, int level, int index, vm_page_reservation* reservation)
{
if (level == 3)
return 0;
uint64_t* pte = &TableFromPa(ptPa)[index];
vm_page* page = NULL;
retry:
uint64_t oldPte = atomic_get64((int64*) pte);
int type = oldPte & 0x3;
if (type == 0x3) {
return oldPte & kPteAddrMask;
} else if (reservation != NULL) {
if (page == NULL)
page = vm_page_allocate_page(reservation, PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR);
phys_addr_t newTablePa = page->physical_page_number << fPageBits;
if (type == 0x1) {
int tableBits = fPageBits - 3;
int shift = tableBits * (3 - (level + 1)) + fPageBits;
uint64_t entrySize = 1UL << shift;
uint64_t tableSize = 1UL << tableBits;
uint64_t* newTable = TableFromPa(newTablePa);
uint64_t addr = oldPte & kPteAddrMask;
uint64_t attr = oldPte & kPteAttrMask;
for (uint64_t i = 0; i < tableSize; i++) {
newTable[i] = MakeBlock(addr + i * entrySize, level + 1, attr);
}
}
asm("dsb ish");
if ((uint64_t) atomic_test_and_set64((int64*) pte, newTablePa | 0x3, oldPte) != oldPte)
goto retry;
return newTablePa;
}
return 0;
}
void
VMSAv8TranslationMap::MapRange(phys_addr_t ptPa, int level, addr_t va, phys_addr_t pa, size_t size,
VMSAv8TranslationMap::VMAction action, uint64_t attr, vm_page_reservation* reservation)
{
ASSERT(level < 4);
ASSERT(ptPa != 0);
ASSERT(reservation != NULL || action != VMAction::MAP);
int tableBits = fPageBits - 3;
uint64_t tableMask = (1UL << tableBits) - 1;
int shift = tableBits * (3 - level) + fPageBits;
uint64_t entrySize = 1UL << shift;
uint64_t entryMask = entrySize - 1;
uint64_t nextVa = va;
uint64_t end = va + size;
int index;
if ((va & entryMask) != 0) {
uint64_t aligned = (va & ~entryMask) + entrySize;
if (end > aligned) {
index = (va >> shift) & tableMask;
phys_addr_t table = MakeTable(ptPa, level, index, reservation);
MapRange(table, level + 1, va, pa, aligned - va, action, attr, reservation);
nextVa = aligned;
}
}
while (nextVa + entrySize <= end) {
phys_addr_t targetPa = pa + (nextVa - va);
index = (nextVa >> shift) & tableMask;
bool blockAllowed = false;
if (action == VMAction::MAP)
blockAllowed = (level >= fMinBlockLevel && (targetPa & entryMask) == 0);
if (action == VMAction::SET_ATTR || action == VMAction::CLEAR_FLAGS)
blockAllowed = (MakeTable(ptPa, level, index, NULL) == 0);
if (action == VMAction::UNMAP)
blockAllowed = true;
if (blockAllowed) {
uint64_t* pte = &TableFromPa(ptPa)[index];
retry:
uint64_t oldPte = atomic_get64((int64*) pte);
if (action == VMAction::MAP || (oldPte & 0x1) != 0) {
uint64_t newPte = 0;
if (action == VMAction::MAP) {
newPte = MakeBlock(targetPa, level, attr);
} else if (action == VMAction::SET_ATTR) {
newPte = MakeBlock(oldPte & kPteAddrMask, level, MoveAttrFlags(attr, oldPte));
} else if (action == VMAction::CLEAR_FLAGS) {
newPte = MakeBlock(oldPte & kPteAddrMask, level, ClearAttrFlags(oldPte, attr));
} else if (action == VMAction::UNMAP) {
newPte = 0;
tmp_pte = oldPte;
}
if ((uint64_t) atomic_test_and_set64((int64*) pte, newPte, oldPte) != oldPte)
goto retry;
if (level < 3 && (oldPte & 0x3) == 0x3) {
FreeTable(oldPte & kPteAddrMask, level);
}
}
} else {
phys_addr_t table = MakeTable(ptPa, level, index, reservation);
MapRange(table, level + 1, nextVa, targetPa, entrySize, action, attr, reservation);
}
nextVa += entrySize;
}
if (nextVa < end) {
index = (nextVa >> shift) & tableMask;
phys_addr_t table = MakeTable(ptPa, level, index, reservation);
MapRange(
table, level + 1, nextVa, pa + (nextVa - va), end - nextVa, action, attr, reservation);
}
}
uint8_t
VMSAv8TranslationMap::MairIndex(uint8_t type)
{
for (int i = 0; i < 8; i++)
if (((fMair >> (i * 8)) & 0xff) == type)
return i;
panic("MAIR entry not found");
return 0;
}
uint64_t
VMSAv8TranslationMap::ClearAttrFlags(uint64_t attr, uint32 flags)
{
attr &= kPteAttrMask;
if ((flags & PAGE_ACCESSED) != 0)
attr &= ~kAttrAF;
if ((flags & PAGE_MODIFIED) != 0 && (attr & kAttrSWDBM) != 0)
attr |= kAttrAP2;
return attr;
}
uint64_t
VMSAv8TranslationMap::MoveAttrFlags(uint64_t newAttr, uint64_t oldAttr)
{
if ((oldAttr & kAttrAF) != 0)
newAttr |= kAttrAF;
if (((newAttr & oldAttr) & kAttrSWDBM) != 0 && (oldAttr & kAttrAP2) == 0)
newAttr &= ~kAttrAP2;
return newAttr;
}
uint64_t
VMSAv8TranslationMap::GetMemoryAttr(uint32 attributes, uint32 memoryType, bool isKernel)
{
uint64_t attr = 0;
if (!isKernel)
attr |= kAttrNG;
if ((attributes & B_EXECUTE_AREA) == 0)
attr |= kAttrUXN;
if ((attributes & B_KERNEL_EXECUTE_AREA) == 0)
attr |= kAttrPXN;
if ((attributes & B_READ_AREA) == 0) {
attr |= kAttrAP2;
if ((attributes & B_KERNEL_WRITE_AREA) != 0)
attr |= kAttrSWDBM;
} else {
attr |= kAttrAP2 | kAttrAP1;
if ((attributes & B_WRITE_AREA) != 0)
attr |= kAttrSWDBM;
}
if ((fHwFeature & HW_DIRTY) != 0 && (attr & kAttrSWDBM))
attr |= kAttrDBM;
attr |= kAttrSH1 | kAttrSH0;
attr |= MairIndex(MAIR_NORMAL_WB) << 2;
return attr;
}
status_t
VMSAv8TranslationMap::Map(addr_t va, phys_addr_t pa, uint32 attributes, uint32 memoryType,
vm_page_reservation* reservation)
{
ThreadCPUPinner pinner(thread_get_current_thread());
uint64_t pageMask = (1UL << fPageBits) - 1;
uint64_t vaMask = (1UL << fVaBits) - 1;
ASSERT((va & pageMask) == 0);
ASSERT((pa & pageMask) == 0);
ASSERT(ValidateVa(va));
uint64_t attr = GetMemoryAttr(attributes, memoryType, fIsKernel);
if (!fPageTable) {
vm_page* page = vm_page_allocate_page(reservation, PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR);
fPageTable = page->physical_page_number << fPageBits;
}
MapRange(
fPageTable, fInitialLevel, va & vaMask, pa, B_PAGE_SIZE, VMAction::MAP, attr, reservation);
return B_OK;
}
status_t
VMSAv8TranslationMap::Unmap(addr_t start, addr_t end)
{
ThreadCPUPinner pinner(thread_get_current_thread());
size_t size = end - start + 1;
uint64_t pageMask = (1UL << fPageBits) - 1;
uint64_t vaMask = (1UL << fVaBits) - 1;
ASSERT((start & pageMask) == 0);
ASSERT((size & pageMask) == 0);
ASSERT(ValidateVa(start));
MapRange(fPageTable, fInitialLevel, start & vaMask, 0, size, VMAction::UNMAP, 0, NULL);
return B_OK;
}
status_t
VMSAv8TranslationMap::UnmapPage(VMArea* area, addr_t address, bool updatePageQueue)
{
ThreadCPUPinner pinner(thread_get_current_thread());
RecursiveLocker locker(fLock);
phys_addr_t pa;
uint64_t pte;
if (!WalkTable(fPageTable, fInitialLevel, address, &pa, &pte))
return B_ENTRY_NOT_FOUND;
uint64_t vaMask = (1UL << fVaBits) - 1;
MapRange(fPageTable, fInitialLevel, address & vaMask, 0, B_PAGE_SIZE, VMAction::UNMAP, 0, NULL);
pinner.Unlock();
locker.Detach();
PageUnmapped(area, pa >> fPageBits, (tmp_pte & kAttrAF) != 0, (tmp_pte & kAttrAP2) == 0,
updatePageQueue);
return B_OK;
}
bool
VMSAv8TranslationMap::WalkTable(
phys_addr_t ptPa, int level, addr_t va, phys_addr_t* pa, uint64_t* rpte)
{
int tableBits = fPageBits - 3;
uint64_t tableMask = (1UL << tableBits) - 1;
int shift = tableBits * (3 - level) + fPageBits;
uint64_t entrySize = 1UL << shift;
uint64_t entryMask = entrySize - 1;
int index = (va >> shift) & tableMask;
uint64_t pte = TableFromPa(ptPa)[index];
int type = pte & 0x3;
if ((type & 0x1) == 0)
return false;
uint64_t addr = pte & kPteAddrMask;
if (level < 3) {
if (type == 0x3) {
return WalkTable(addr, level + 1, va, pa, rpte);
} else {
*pa = addr | (va & entryMask);
*rpte = pte;
}
} else {
ASSERT(type == 0x3);
*pa = addr;
*rpte = pte;
}
return true;
}
bool
VMSAv8TranslationMap::ValidateVa(addr_t va)
{
uint64_t vaMask = (1UL << fVaBits) - 1;
bool kernelAddr = (va & (1UL << 63)) != 0;
if (kernelAddr != fIsKernel)
return false;
if ((va & ~vaMask) != (fIsKernel ? ~vaMask : 0))
return false;
return true;
}
status_t
VMSAv8TranslationMap::Query(addr_t va, phys_addr_t* pa, uint32* flags)
{
ThreadCPUPinner pinner(thread_get_current_thread());
ASSERT(ValidateVa(va));
uint64_t pte = 0;
bool ret = WalkTable(fPageTable, fInitialLevel, va, pa, &pte);
uint32 result = 0;
if (ret) {
result |= PAGE_PRESENT;
if ((pte & kAttrAF) != 0)
result |= PAGE_ACCESSED;
if ((pte & kAttrAP2) == 0)
result |= PAGE_MODIFIED;
if ((pte & kAttrUXN) == 0)
result |= B_EXECUTE_AREA;
if ((pte & kAttrPXN) == 0)
result |= B_KERNEL_EXECUTE_AREA;
result |= B_KERNEL_READ_AREA;
if ((pte & kAttrAP1) != 0)
result |= B_READ_AREA;
if ((pte & kAttrAP2) == 0 || (pte & kAttrSWDBM) != 0) {
result |= B_KERNEL_WRITE_AREA;
if ((pte & kAttrAP1) != 0)
result |= B_WRITE_AREA;
}
}
*flags = result;
return B_OK;
}
status_t
VMSAv8TranslationMap::QueryInterrupt(
addr_t virtualAddress, phys_addr_t* _physicalAddress, uint32* _flags)
{
return Query(virtualAddress, _physicalAddress, _flags);
}
status_t
VMSAv8TranslationMap::Protect(addr_t start, addr_t end, uint32 attributes, uint32 memoryType)
{
ThreadCPUPinner pinner(thread_get_current_thread());
size_t size = end - start + 1;
uint64_t pageMask = (1UL << fPageBits) - 1;
uint64_t vaMask = (1UL << fVaBits) - 1;
ASSERT((start & pageMask) == 0);
ASSERT((size & pageMask) == 0);
ASSERT(ValidateVa(start));
uint64_t attr = GetMemoryAttr(attributes, memoryType, fIsKernel);
MapRange(fPageTable, fInitialLevel, start & vaMask, 0, size, VMAction::SET_ATTR, attr, NULL);
return B_OK;
}
status_t
VMSAv8TranslationMap::ClearFlags(addr_t va, uint32 flags)
{
ThreadCPUPinner pinner(thread_get_current_thread());
uint64_t pageMask = (1UL << fPageBits) - 1;
uint64_t vaMask = (1UL << fVaBits) - 1;
ASSERT((va & pageMask) == 0);
ASSERT(ValidateVa(va));
MapRange(
fPageTable, fInitialLevel, va & vaMask, 0, B_PAGE_SIZE, VMAction::CLEAR_FLAGS, flags, NULL);
return B_OK;
}
bool
VMSAv8TranslationMap::ClearAccessedAndModified(
VMArea* area, addr_t address, bool unmapIfUnaccessed, bool& _modified)
{
panic("VMSAv8TranslationMap::ClearAccessedAndModified not implemented\n");
return B_OK;
}
void
VMSAv8TranslationMap::Flush()
{
ThreadCPUPinner pinner(thread_get_current_thread());
arch_cpu_global_TLB_invalidate();
}