* Copyright 2007-2010, Haiku, Inc. All Rights Reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Ithamar Adema, ithamar AT unet DOT nl
* Axel Dörfler, axeld@pinc-software.de
*/
#include "hda_controller_defs.h"
#include <algorithm>
#include "driver.h"
#include "hda_codec_defs.h"
#define MAKE_RATE(base, multiply, divide) \
((base == 44100 ? FORMAT_44_1_BASE_RATE : 0) \
| ((multiply - 1) << FORMAT_MULTIPLY_RATE_SHIFT) \
| ((divide - 1) << FORMAT_DIVIDE_RATE_SHIFT))
#define HDAC_INPUT_STREAM_OFFSET(controller, index) \
((index) * HDAC_STREAM_SIZE)
#define HDAC_OUTPUT_STREAM_OFFSET(controller, index) \
(((controller)->num_input_streams + (index)) * HDAC_STREAM_SIZE)
#define HDAC_BIDIR_STREAM_OFFSET(controller, index) \
(((controller)->num_input_streams + (controller)->num_output_streams \
+ (index)) * HDAC_STREAM_SIZE)
#define ALIGN(size, align) (((size) + align - 1) & ~(align - 1))
#define PAGE_ALIGN(size) (((size) + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1))
static const struct {
uint32 multi_rate;
uint32 hw_rate;
uint32 rate;
} kRates[] = {
{B_SR_8000, MAKE_RATE(48000, 1, 6), 8000},
{B_SR_11025, MAKE_RATE(44100, 1, 4), 11025},
{B_SR_16000, MAKE_RATE(48000, 1, 3), 16000},
{B_SR_22050, MAKE_RATE(44100, 1, 2), 22050},
{B_SR_32000, MAKE_RATE(48000, 2, 3), 32000},
{B_SR_44100, MAKE_RATE(44100, 1, 1), 44100},
{B_SR_48000, MAKE_RATE(48000, 1, 1), 48000},
{B_SR_88200, MAKE_RATE(44100, 2, 1), 88200},
{B_SR_96000, MAKE_RATE(48000, 2, 1), 96000},
{B_SR_176400, MAKE_RATE(44100, 4, 1), 176400},
{B_SR_192000, MAKE_RATE(48000, 4, 1), 192000},
};
static inline void
update_pci_register(hda_controller* controller, uint8 reg, uint32 mask, uint32 value, uint8 size)
{
uint32 tmp = (gPci->read_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function, reg, size);
(gPci->write_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function,
reg, size, (tmp & mask) | value);
}
static inline rirb_t&
current_rirb(hda_controller *controller)
{
return controller->rirb[controller->rirb_read_pos];
}
static inline uint32
next_rirb(hda_controller *controller)
{
return (controller->rirb_read_pos + 1) % controller->rirb_length;
}
static inline uint32
next_corb(hda_controller *controller)
{
return (controller->corb_write_pos + 1) % controller->corb_length;
}
Returns \c true, if the scheduler shall be invoked.
*/
static bool
stream_handle_interrupt(hda_controller* controller, hda_stream* stream,
uint32 index)
{
if (!stream->running)
return false;
uint8 status = stream->Read8(HDAC_STREAM_STATUS);
if (status == 0)
return false;
stream->Write8(HDAC_STREAM_STATUS, status);
if (status & STATUS_FIFO_ERROR)
dprintf("hda: stream fifo error (id:%ld)\n", stream->id);
if (status & STATUS_DESCRIPTOR_ERROR)
dprintf("hda: stream descriptor error (id:%ld)\n", stream->id);
if ((status & STATUS_BUFFER_COMPLETED) == 0) {
dprintf("hda: stream buffer not completed (id:%ld)\n", stream->id);
return false;
}
if (stream->use_dma_position && stream->incorrect_position_count >= 32) {
dprintf("hda: DMA position for stream (id:%ld) seems to be broken. "
"Switching to using LPIB.\n", stream->id);
stream->use_dma_position = false;
}
uint32 dmaPosition = stream->use_dma_position
? controller->stream_positions[index * 2]
: stream->Read32(HDAC_STREAM_POSITION);
uint32 bufferIndex = ((dmaPosition + stream->buffer_size / 2)
/ stream->buffer_size) % stream->num_buffers;
uint32 linkBytePosition = stream->Read32(HDAC_STREAM_POSITION);
bigtime_t now = system_time();
uint32 linkFramePosition = 0;
while (linkBytePosition >= stream->buffer_size) {
linkFramePosition += stream->buffer_length;
linkBytePosition -= stream->buffer_size;
}
linkFramePosition += std::min(
linkBytePosition / (stream->num_channels * stream->sample_size),
stream->buffer_length);
int32 framesProcessed = (int32)linkFramePosition
- (int32)stream->last_link_frame_position;
if (framesProcessed < 0)
framesProcessed += stream->num_buffers * stream->buffer_length;
stream->last_link_frame_position = linkFramePosition;
acquire_spinlock(&stream->lock);
if (bufferIndex == (stream->buffer_cycle + 1) % stream->num_buffers)
stream->incorrect_position_count = 0;
else
stream->incorrect_position_count++;
stream->real_time = now;
stream->frames_count += framesProcessed;
stream->buffer_cycle = bufferIndex;
release_spinlock(&stream->lock);
release_sem_etc(controller->buffer_ready_sem, 1, B_DO_NOT_RESCHEDULE);
return true;
}
static int32
hda_interrupt_handler(hda_controller* controller)
{
int32 handled = B_HANDLED_INTERRUPT;
uint32 intrStatus = controller->Read32(HDAC_INTR_STATUS);
if ((intrStatus & INTR_STATUS_GLOBAL) == 0)
return B_UNHANDLED_INTERRUPT;
if (intrStatus & INTR_STATUS_CONTROLLER) {
uint8 rirbStatus = controller->Read8(HDAC_RIRB_STATUS);
uint8 corbStatus = controller->Read8(HDAC_CORB_STATUS);
if (rirbStatus) {
controller->Write8(HDAC_RIRB_STATUS, rirbStatus);
if ((rirbStatus & RIRB_STATUS_RESPONSE) != 0) {
uint16 writePos = (controller->Read16(HDAC_RIRB_WRITE_POS) + 1)
% controller->rirb_length;
for (; controller->rirb_read_pos != writePos;
controller->rirb_read_pos = next_rirb(controller)) {
uint32 response = current_rirb(controller).response;
uint32 responseFlags = current_rirb(controller).flags;
uint32 cad = responseFlags & RESPONSE_FLAGS_CODEC_MASK;
hda_codec* codec = controller->codecs[cad];
if (codec == NULL) {
dprintf("hda: Response for unknown codec %ld: "
"%08lx/%08lx\n", cad, response, responseFlags);
continue;
}
if ((responseFlags & RESPONSE_FLAGS_UNSOLICITED) != 0) {
dprintf("hda: Unsolicited response: %08lx/%08lx\n",
response, responseFlags);
codec->unsol_responses[codec->unsol_response_write++] =
response;
codec->unsol_response_write %= MAX_CODEC_UNSOL_RESPONSES;
release_sem_etc(codec->unsol_response_sem, 1,
B_DO_NOT_RESCHEDULE);
handled = B_INVOKE_SCHEDULER;
continue;
}
if (codec->response_count >= MAX_CODEC_RESPONSES) {
dprintf("hda: too many responses received for codec %ld"
": %08lx/%08lx!\n", cad, response, responseFlags);
continue;
}
codec->responses[codec->response_count++] = response;
release_sem_etc(codec->response_sem, 1, B_DO_NOT_RESCHEDULE);
handled = B_INVOKE_SCHEDULER;
}
}
if ((rirbStatus & RIRB_STATUS_OVERRUN) != 0)
dprintf("hda: RIRB Overflow\n");
}
if (corbStatus) {
controller->Write8(HDAC_CORB_STATUS, corbStatus);
if ((corbStatus & CORB_STATUS_MEMORY_ERROR) != 0)
dprintf("hda: CORB Memory Error!\n");
}
}
if ((intrStatus & INTR_STATUS_STREAM_MASK) != 0) {
for (uint32 index = 0; index < HDA_MAX_STREAMS; index++) {
if ((intrStatus & (1 << index)) != 0) {
if (controller->streams[index]) {
if (stream_handle_interrupt(controller,
controller->streams[index], index)) {
handled = B_INVOKE_SCHEDULER;
}
} else {
dprintf("hda: Stream interrupt for unconfigured stream "
"%ld!\n", index);
}
}
}
}
return handled;
}
static status_t
reset_controller(hda_controller* controller)
{
for (uint32 i = 0; i < controller->num_input_streams; i++) {
controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE
+ HDAC_INPUT_STREAM_OFFSET(controller, i), 0);
controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE
+ HDAC_INPUT_STREAM_OFFSET(controller, i), 0);
}
for (uint32 i = 0; i < controller->num_output_streams; i++) {
controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE
+ HDAC_OUTPUT_STREAM_OFFSET(controller, i), 0);
controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE
+ HDAC_OUTPUT_STREAM_OFFSET(controller, i), 0);
}
for (uint32 i = 0; i < controller->num_bidir_streams; i++) {
controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE
+ HDAC_BIDIR_STREAM_OFFSET(controller, i), 0);
controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE
+ HDAC_BIDIR_STREAM_OFFSET(controller, i), 0);
}
controller->Write8(HDAC_CORB_CONTROL, 0);
controller->Write8(HDAC_RIRB_CONTROL, 0);
controller->Write32(HDAC_DMA_POSITION_BASE_LOWER, 0);
controller->Write32(HDAC_DMA_POSITION_BASE_UPPER, 0);
uint32 control = controller->Read32(HDAC_GLOBAL_CONTROL);
controller->Write32(HDAC_GLOBAL_CONTROL, control & ~GLOBAL_CONTROL_RESET);
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
control = controller->Read32(HDAC_GLOBAL_CONTROL);
if ((control & GLOBAL_CONTROL_RESET) == 0)
break;
}
if ((control & GLOBAL_CONTROL_RESET) != 0) {
dprintf("hda: unable to reset controller\n");
return B_BUSY;
}
control = controller->Read32(HDAC_GLOBAL_CONTROL);
controller->Write32(HDAC_GLOBAL_CONTROL, control | GLOBAL_CONTROL_RESET);
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
control = controller->Read32(HDAC_GLOBAL_CONTROL);
if ((control & GLOBAL_CONTROL_RESET) != 0)
break;
}
if ((control & GLOBAL_CONTROL_RESET) == 0) {
dprintf("hda: unable to exit reset\n");
return B_BUSY;
}
snooze(1000);
control = controller->Read32(HDAC_GLOBAL_CONTROL);
controller->Write32(HDAC_GLOBAL_CONTROL, control | GLOBAL_CONTROL_UNSOLICITED);
return B_OK;
}
Response Input Ring Buffer (RIRB) to the maximum supported size, and also
the DMA position buffer.
Programs the controller hardware to make use of these buffers (the DMA
positioning is actually enabled in hda_stream_setup_buffers()).
*/
static status_t
init_corb_rirb_pos(hda_controller* controller)
{
uint32 memSize, rirbOffset, posOffset;
uint8 corbSize, rirbSize, posSize;
status_t rc = B_OK;
physical_entry pe;
corbSize = controller->Read8(HDAC_CORB_SIZE);
if ((corbSize & CORB_SIZE_CAP_256_ENTRIES) != 0) {
controller->corb_length = 256;
controller->Write8(HDAC_CORB_SIZE, CORB_SIZE_256_ENTRIES);
} else if (corbSize & CORB_SIZE_CAP_16_ENTRIES) {
controller->corb_length = 16;
controller->Write8(HDAC_CORB_SIZE, CORB_SIZE_16_ENTRIES);
} else if (corbSize & CORB_SIZE_CAP_2_ENTRIES) {
controller->corb_length = 2;
controller->Write8(HDAC_CORB_SIZE, CORB_SIZE_2_ENTRIES);
}
rirbSize = controller->Read8(HDAC_RIRB_SIZE);
if (rirbSize & RIRB_SIZE_CAP_256_ENTRIES) {
controller->rirb_length = 256;
controller->Write8(HDAC_RIRB_SIZE, RIRB_SIZE_256_ENTRIES);
} else if (rirbSize & RIRB_SIZE_CAP_16_ENTRIES) {
controller->rirb_length = 16;
controller->Write8(HDAC_RIRB_SIZE, RIRB_SIZE_16_ENTRIES);
} else if (rirbSize & RIRB_SIZE_CAP_2_ENTRIES) {
controller->rirb_length = 2;
controller->Write8(HDAC_RIRB_SIZE, RIRB_SIZE_2_ENTRIES);
}
rirbOffset = ALIGN(controller->corb_length * sizeof(corb_t), 128);
posOffset = ALIGN(rirbOffset + controller->rirb_length * sizeof(rirb_t), 128);
posSize = 8 * (controller->num_input_streams
+ controller->num_output_streams + controller->num_bidir_streams);
memSize = PAGE_ALIGN(posOffset + posSize);
controller->corb_rirb_pos_area = create_area("hda corb/rirb/pos",
(void**)&controller->corb, B_ANY_KERNEL_ADDRESS, memSize,
B_CONTIGUOUS, 0);
if (controller->corb_rirb_pos_area < 0)
return controller->corb_rirb_pos_area;
controller->rirb = (rirb_t*)(((uint8*)controller->corb) + rirbOffset);
if ((rc = get_memory_map(controller->corb, memSize, &pe, 1)) != B_OK) {
delete_area(controller->corb_rirb_pos_area);
return rc;
}
controller->Write32(HDAC_CORB_BASE_LOWER, (uint32)pe.address);
controller->Write32(HDAC_CORB_BASE_UPPER,
(uint32)((uint64)pe.address >> 32));
controller->Write32(HDAC_RIRB_BASE_LOWER, (uint32)pe.address + rirbOffset);
controller->Write32(HDAC_RIRB_BASE_UPPER,
(uint32)(((uint64)pe.address + rirbOffset) >> 32));
controller->Write32(HDAC_DMA_POSITION_BASE_LOWER,
(uint32)pe.address + posOffset);
controller->Write32(HDAC_DMA_POSITION_BASE_UPPER,
(uint32)(((uint64)pe.address + posOffset) >> 32));
controller->stream_positions = (uint32*)
((uint8*)controller->corb + posOffset);
controller->Write16(HDAC_CORB_WRITE_POS, 0);
controller->Write16(HDAC_CORB_READ_POS, CORB_READ_POS_RESET);
We reset the bit here. */
controller->Write16(HDAC_CORB_READ_POS, 0);
controller->Write16(HDAC_RIRB_WRITE_POS, RIRB_WRITE_POS_RESET);
controller->Write16(HDAC_RESPONSE_INTR_COUNT, 1);
controller->rirb_read_pos = 1;
controller->corb_write_pos = 0;
controller->Write8(HDAC_CORB_CONTROL,
CORB_CONTROL_RUN | CORB_CONTROL_MEMORY_ERROR_INTR);
controller->Write8(HDAC_RIRB_CONTROL, RIRB_CONTROL_DMA_ENABLE
| RIRB_CONTROL_OVERRUN_INTR | RIRB_CONTROL_RESPONSE_INTR);
return B_OK;
}
void
hda_stream_delete(hda_stream* stream)
{
if (stream->buffer_area >= B_OK)
delete_area(stream->buffer_area);
if (stream->buffer_descriptors_area >= B_OK)
delete_area(stream->buffer_descriptors_area);
free(stream);
}
hda_stream*
hda_stream_new(hda_audio_group* audioGroup, int type)
{
hda_controller* controller = audioGroup->codec->controller;
hda_stream* stream = (hda_stream*)calloc(1, sizeof(hda_stream));
if (stream == NULL)
return NULL;
stream->buffer_area = B_ERROR;
stream->buffer_descriptors_area = B_ERROR;
stream->type = type;
stream->controller = controller;
stream->incorrect_position_count = 0;
stream->use_dma_position = true;
switch (type) {
case STREAM_PLAYBACK:
stream->id = 1;
stream->offset = HDAC_OUTPUT_STREAM_OFFSET(controller, 0);
break;
case STREAM_RECORD:
stream->id = 2;
stream->offset = HDAC_INPUT_STREAM_OFFSET(controller, 0);
break;
default:
dprintf("%s: Unknown stream type %d!\n", __func__, type);
free(stream);
return NULL;
}
if (hda_audio_group_get_widgets(audioGroup, stream) == B_OK) {
switch (type) {
case STREAM_PLAYBACK:
controller->streams[controller->num_input_streams] = stream;
break;
case STREAM_RECORD:
controller->streams[0] = stream;
break;
}
return stream;
}
dprintf("hda: hda_audio_group_get_widgets failed for %s stream\n",
type == STREAM_PLAYBACK ? " playback" : "record");
free(stream);
return NULL;
}
interrupts for this stream.
*/
status_t
hda_stream_start(hda_controller* controller, hda_stream* stream)
{
dprintf("hda_stream_start() offset %lx\n", stream->offset);
stream->frames_count = 0;
stream->last_link_frame_position = 0;
controller->Write32(HDAC_INTR_CONTROL, controller->Read32(HDAC_INTR_CONTROL)
| (1 << (stream->offset / HDAC_STREAM_SIZE)));
stream->Write8(HDAC_STREAM_CONTROL0, stream->Read8(HDAC_STREAM_CONTROL0)
| CONTROL0_BUFFER_COMPLETED_INTR | CONTROL0_FIFO_ERROR_INTR
| CONTROL0_DESCRIPTOR_ERROR_INTR | CONTROL0_RUN);
stream->running = true;
return B_OK;
}
stream.
*/
status_t
hda_stream_stop(hda_controller* controller, hda_stream* stream)
{
dprintf("hda_stream_stop()\n");
stream->Write8(HDAC_STREAM_CONTROL0, stream->Read8(HDAC_STREAM_CONTROL0)
& ~(CONTROL0_BUFFER_COMPLETED_INTR | CONTROL0_FIFO_ERROR_INTR
| CONTROL0_DESCRIPTOR_ERROR_INTR | CONTROL0_RUN));
controller->Write32(HDAC_INTR_CONTROL, controller->Read32(HDAC_INTR_CONTROL)
& ~(1 << (stream->offset / HDAC_STREAM_SIZE)));
stream->running = false;
return B_OK;
}
status_t
hda_stream_setup_buffers(hda_audio_group* audioGroup, hda_stream* stream,
const char* desc)
{
uint32 response[2];
physical_entry pe;
bdl_entry_t* bufferDescriptors;
corb_t verb[2];
uint8* buffer;
status_t rc;
if (stream->buffer_area >= B_OK) {
delete_area(stream->buffer_area);
stream->buffer_area = B_ERROR;
}
if (stream->buffer_descriptors_area >= B_OK) {
delete_area(stream->buffer_descriptors_area);
stream->buffer_descriptors_area = B_ERROR;
}
uint16 format = (stream->num_channels - 1) & 0xf;
switch (stream->sample_format) {
case B_FMT_8BIT_S: format |= FORMAT_8BIT; stream->bps = 8; break;
case B_FMT_16BIT: format |= FORMAT_16BIT; stream->bps = 16; break;
case B_FMT_20BIT: format |= FORMAT_20BIT; stream->bps = 20; break;
case B_FMT_24BIT: format |= FORMAT_24BIT; stream->bps = 24; break;
case B_FMT_32BIT: format |= FORMAT_32BIT; stream->bps = 32; break;
default:
dprintf("hda: Invalid sample format: 0x%lx\n",
stream->sample_format);
break;
}
for (uint32 index = 0; index < sizeof(kRates) / sizeof(kRates[0]); index++) {
if (kRates[index].multi_rate == stream->sample_rate) {
format |= kRates[index].hw_rate;
stream->rate = kRates[index].rate;
break;
}
}
stream->buffer_size = ALIGN(stream->buffer_length * stream->num_channels
* stream->sample_size, 128);
dprintf("HDA: sample size %ld, num channels %ld, buffer length %ld, **********\n",
stream->sample_size, stream->num_channels, stream->buffer_length);
dprintf("IRA: %s: setup stream %ld: SR=%ld, SF=%ld F=0x%x (0x%lx)\n", __func__, stream->id,
stream->rate, stream->bps, format, stream->sample_format);
uint32 alloc = stream->buffer_size * stream->num_buffers;
alloc = PAGE_ALIGN(alloc);
stream->buffer_area = create_area("hda buffers", (void**)&buffer,
B_ANY_KERNEL_ADDRESS, alloc, B_CONTIGUOUS, B_READ_AREA | B_WRITE_AREA);
if (stream->buffer_area < B_OK)
return stream->buffer_area;
rc = get_memory_map(buffer, alloc, &pe, 1);
if (rc != B_OK) {
delete_area(stream->buffer_area);
return rc;
}
phys_addr_t bufferPhysicalAddress = pe.address;
dprintf("%s(%s): Allocated %lu bytes for %ld buffers\n", __func__, desc,
alloc, stream->num_buffers);
for (uint32 index = 0; index < stream->num_buffers; index++) {
stream->buffers[index] = buffer + (index * stream->buffer_size);
stream->physical_buffers[index] = bufferPhysicalAddress
+ (index * stream->buffer_size);
}
uint32 bdlCount = stream->num_buffers;
alloc = bdlCount * sizeof(bdl_entry_t);
alloc = PAGE_ALIGN(alloc);
stream->buffer_descriptors_area = create_area("hda buffer descriptors",
(void**)&bufferDescriptors, B_ANY_KERNEL_ADDRESS, alloc,
B_CONTIGUOUS, 0);
if (stream->buffer_descriptors_area < B_OK) {
delete_area(stream->buffer_area);
return stream->buffer_descriptors_area;
}
rc = get_memory_map(bufferDescriptors, alloc, &pe, 1);
if (rc != B_OK) {
delete_area(stream->buffer_area);
delete_area(stream->buffer_descriptors_area);
return rc;
}
stream->physical_buffer_descriptors = (uint32)pe.address;
dprintf("%s(%s): Allocated %ld bytes for %ld BDLEs\n", __func__, desc,
alloc, bdlCount);
uint32 fragments = 0;
for (uint32 index = 0; index < stream->num_buffers;
index++, bufferDescriptors++) {
bufferDescriptors->lower = (uint32)stream->physical_buffers[index];
bufferDescriptors->upper
= (uint32)((uint64)stream->physical_buffers[index] >> 32);
fragments++;
bufferDescriptors->length = stream->buffer_size;
bufferDescriptors->ioc = 1;
}
stream->Write16(HDAC_STREAM_FORMAT, format);
stream->Write32(HDAC_STREAM_BUFFERS_BASE_LOWER,
stream->physical_buffer_descriptors);
stream->Write32(HDAC_STREAM_BUFFERS_BASE_UPPER, 0);
stream->Write16(HDAC_STREAM_LAST_VALID, fragments - 1);
stream->Write32(HDAC_STREAM_BUFFER_SIZE, stream->buffer_size
* stream->num_buffers);
stream->Write8(HDAC_STREAM_CONTROL2, stream->id << CONTROL2_STREAM_SHIFT);
stream->controller->Write32(HDAC_DMA_POSITION_BASE_LOWER,
stream->controller->Read32(HDAC_DMA_POSITION_BASE_LOWER)
| DMA_POSITION_ENABLED);
dprintf("hda: stream: %ld fifo size: %d num_io_widgets: %ld\n", stream->id,
stream->Read16(HDAC_STREAM_FIFO_SIZE), stream->num_io_widgets);
dprintf("hda: widgets: ");
hda_codec* codec = audioGroup->codec;
uint32 channelNum = 0;
for (uint32 i = 0; i < stream->num_io_widgets; i++) {
verb[0] = MAKE_VERB(codec->addr, stream->io_widgets[i],
VID_SET_CONVERTER_FORMAT, format);
uint32 val = stream->id << 4;
if (channelNum < stream->num_channels)
val |= channelNum;
else
val = 0;
verb[1] = MAKE_VERB(codec->addr, stream->io_widgets[i],
VID_SET_CONVERTER_STREAM_CHANNEL, val);
hda_send_verbs(codec, verb, response, 2);
dprintf("%ld ", stream->io_widgets[i]);
}
dprintf("\n");
snooze(1000);
return B_OK;
}
status_t
hda_send_verbs(hda_codec* codec, corb_t* verbs, uint32* responses, uint32 count)
{
hda_controller *controller = codec->controller;
uint32 sent = 0;
codec->response_count = 0;
while (sent < count) {
uint32 readPos = controller->Read16(HDAC_CORB_READ_POS);
uint32 queued = 0;
while (sent < count) {
uint32 writePos = next_corb(controller);
if (writePos == readPos) {
break;
}
controller->corb[writePos] = verbs[sent++];
controller->corb_write_pos = writePos;
queued++;
}
controller->Write16(HDAC_CORB_WRITE_POS, controller->corb_write_pos);
status_t status = acquire_sem_etc(codec->response_sem, queued,
B_RELATIVE_TIMEOUT, 50000ULL);
if (status < B_OK)
return status;
}
if (responses != NULL)
memcpy(responses, codec->responses, count * sizeof(uint32));
return B_OK;
}
status_t
hda_verb_write(hda_codec* codec, uint32 nid, uint32 vid, uint16 payload)
{
corb_t verb = MAKE_VERB(codec->addr, nid, vid, payload);
return hda_send_verbs(codec, &verb, NULL, 1);
}
status_t
hda_verb_read(hda_codec* codec, uint32 nid, uint32 vid, uint32 *response)
{
corb_t verb = MAKE_VERB(codec->addr, nid, vid, 0);
return hda_send_verbs(codec, &verb, response, 1);
}
status_t
hda_hw_init(hda_controller* controller)
{
uint16 capabilities, stateStatus, cmd;
status_t status;
controller->regs_area = map_physical_memory("hda_hw_regs",
controller->pci_info.u.h0.base_registers[0],
controller->pci_info.u.h0.base_register_sizes[0], B_ANY_KERNEL_ADDRESS,
0, (void**)&controller->regs);
if (controller->regs_area < B_OK) {
status = controller->regs_area;
goto error;
}
cmd = (gPci->read_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function, PCI_command, 2);
if (!(cmd & PCI_command_master)) {
(gPci->write_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function,
PCI_command, 2, cmd | PCI_command_master);
dprintf("hda: enabling PCI bus mastering\n");
}
controller->irq = controller->pci_info.u.h0.interrupt_line;
status = install_io_interrupt_handler(controller->irq,
(interrupt_handler)hda_interrupt_handler, controller, 0);
if (status != B_OK)
goto no_irq;
update_pci_register(controller, PCI_HDA_TCSEL, PCI_HDA_TCSEL_MASK, 0, 1);
but only based on guessing. */
switch (controller->pci_info.vendor_id) {
case NVIDIA_VENDORID:
update_pci_register(controller, NVIDIA_HDA_TRANSREG,
NVIDIA_HDA_TRANSREG_MASK, NVIDIA_HDA_ENABLE_COHBITS, 1);
update_pci_register(controller, NVIDIA_HDA_ISTRM_COH,
~NVIDIA_HDA_ENABLE_COHBIT, NVIDIA_HDA_ENABLE_COHBIT, 1);
update_pci_register(controller, NVIDIA_HDA_OSTRM_COH,
~NVIDIA_HDA_ENABLE_COHBIT, NVIDIA_HDA_ENABLE_COHBIT, 1);
break;
case ATI_VENDORID:
update_pci_register(controller, ATI_HDA_MISC_CNTR2,
ATI_HDA_MISC_CNTR2_MASK, ATI_HDA_ENABLE_SNOOP, 1);
break;
case INTEL_VENDORID:
if (controller->pci_info.device_id == INTEL_SCH_DEVICEID) {
update_pci_register(controller, INTEL_SCH_HDA_DEVC,
~INTEL_SCH_HDA_DEVC_SNOOP, 0, 2);
}
break;
}
capabilities = controller->Read16(HDAC_GLOBAL_CAP);
controller->num_input_streams = GLOBAL_CAP_INPUT_STREAMS(capabilities);
controller->num_output_streams = GLOBAL_CAP_OUTPUT_STREAMS(capabilities);
controller->num_bidir_streams = GLOBAL_CAP_BIDIR_STREAMS(capabilities);
dprintf("hda: HDA v%d.%d, O:%ld/I:%ld/B:%ld, #SDO:%d, 64bit:%s\n",
controller->Read8(HDAC_VERSION_MAJOR),
controller->Read8(HDAC_VERSION_MINOR),
controller->num_output_streams, controller->num_input_streams,
controller->num_bidir_streams,
GLOBAL_CAP_NUM_SDO(capabilities),
GLOBAL_CAP_64BIT(capabilities) ? "yes" : "no");
status = reset_controller(controller);
if (status != B_OK) {
dprintf("hda: reset_controller failed\n");
goto reset_failed;
}
status = init_corb_rirb_pos(controller);
if (status != B_OK) {
dprintf("hda: init_corb_rirb_pos failed\n");
goto corb_rirb_failed;
}
* Don't enable codec state change interrupts. We don't handle
* them, as we want to use the STATE_STATUS register to identify
* available codecs. We'd have to clear that register in the interrupt
* handler to 'ack' the codec change.
*/
controller->Write16(HDAC_WAKE_ENABLE, 0x0);
controller->Write32(HDAC_INTR_CONTROL, INTR_CONTROL_GLOBAL_ENABLE
| INTR_CONTROL_CONTROLLER_ENABLE);
snooze(1000);
stateStatus = controller->Read16(HDAC_STATE_STATUS);
if (!stateStatus) {
dprintf("hda: bad codec status\n");
status = ENODEV;
goto corb_rirb_failed;
}
controller->Write16(HDAC_STATE_STATUS, stateStatus);
for (uint32 index = 0; index < HDA_MAX_CODECS; index++) {
if ((stateStatus & (1 << index)) != 0)
hda_codec_new(controller, index);
}
for (uint32 index = 0; index < HDA_MAX_CODECS; index++) {
if (controller->codecs[index]
&& controller->codecs[index]->num_audio_groups > 0) {
controller->active_codec = controller->codecs[index];
break;
}
}
controller->buffer_ready_sem = create_sem(0, "hda_buffer_sem");
if (controller->buffer_ready_sem < B_OK) {
dprintf("hda: failed to create semaphore\n");
status = ENODEV;
goto corb_rirb_failed;
}
if (controller->active_codec != NULL)
return B_OK;
dprintf("hda: no active codec\n");
status = ENODEV;
delete_sem(controller->buffer_ready_sem);
corb_rirb_failed:
controller->Write32(HDAC_INTR_CONTROL, 0);
reset_failed:
remove_io_interrupt_handler(controller->irq,
(interrupt_handler)hda_interrupt_handler, controller);
no_irq:
delete_area(controller->regs_area);
controller->regs_area = B_ERROR;
controller->regs = NULL;
error:
dprintf("hda: ERROR: %s(%ld)\n", strerror(status), status);
return status;
}
void
hda_hw_stop(hda_controller* controller)
{
int index;
for (index = 0; index < HDA_MAX_STREAMS; index++) {
if (controller->streams[index] && controller->streams[index]->running)
hda_stream_stop(controller, controller->streams[index]);
}
}
void
hda_hw_uninit(hda_controller* controller)
{
uint32 index;
if (controller == NULL)
return;
hda_hw_stop(controller);
if (controller->buffer_ready_sem >= B_OK) {
delete_sem(controller->buffer_ready_sem);
controller->buffer_ready_sem = B_ERROR;
}
reset_controller(controller);
controller->Write32(HDAC_INTR_CONTROL, 0);
remove_io_interrupt_handler(controller->irq,
(interrupt_handler)hda_interrupt_handler, controller);
if (controller->corb_rirb_pos_area >= 0) {
delete_area(controller->corb_rirb_pos_area);
controller->corb_rirb_pos_area = B_ERROR;
controller->corb = NULL;
controller->rirb = NULL;
controller->stream_positions = NULL;
}
if (controller->regs_area >= 0) {
delete_area(controller->regs_area);
controller->regs_area = B_ERROR;
controller->regs = NULL;
}
for (index = 0; index < HDA_MAX_CODECS; index++) {
if (controller->codecs[index] != NULL)
hda_codec_delete(controller->codecs[index]);
}
}