* Copyright 2006-2009, Haiku, Inc. All Rights Reserved.
* Distributed under the terms of the MIT License.
*
* Support for i915 chipset and up based on the X driver,
* Copyright 2006-2007 Intel Corporation.
*
* Authors:
* Axel Dörfler, axeld@pinc-software.de
*/
#include "accelerant_protos.h"
#include "accelerant.h"
#include "utility.h"
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <create_display_modes.h>
#include <ddc.h>
#include <edid.h>
#define TRACE_MODE
#ifdef TRACE_MODE
extern "C" void _sPrintf(const char *format, ...);
# define TRACE(x) _sPrintf x
#else
# define TRACE(x) ;
#endif
struct display_registers {
uint32 pll;
uint32 divisors;
uint32 control;
uint32 pipe_config;
uint32 horiz_total;
uint32 horiz_blank;
uint32 horiz_sync;
uint32 vert_total;
uint32 vert_blank;
uint32 vert_sync;
uint32 size;
uint32 stride;
uint32 position;
uint32 pipe_source;
};
struct pll_divisors {
uint32 post;
uint32 post1;
uint32 post2;
bool post2_high;
uint32 n;
uint32 m;
uint32 m1;
uint32 m2;
};
struct pll_limits {
pll_divisors min;
pll_divisors max;
uint32 min_post2_frequency;
uint32 min_vco;
uint32 max_vco;
};
static status_t
get_i2c_signals(void* cookie, int* _clock, int* _data)
{
uint32 ioRegister = (uint32)cookie;
uint32 value = read32(ioRegister);
*_clock = (value & I2C_CLOCK_VALUE_IN) != 0;
*_data = (value & I2C_DATA_VALUE_IN) != 0;
return B_OK;
}
static status_t
set_i2c_signals(void* cookie, int clock, int data)
{
uint32 ioRegister = (uint32)cookie;
uint32 value;
if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_83x)) {
value = 0;
} else {
value = read32(ioRegister) & I2C_RESERVED;
}
if (data != 0)
value |= I2C_DATA_DIRECTION_MASK;
else
value |= I2C_DATA_DIRECTION_MASK | I2C_DATA_DIRECTION_OUT | I2C_DATA_VALUE_MASK;
if (clock != 0)
value |= I2C_CLOCK_DIRECTION_MASK;
else
value |= I2C_CLOCK_DIRECTION_MASK | I2C_CLOCK_DIRECTION_OUT | I2C_CLOCK_VALUE_MASK;
write32(ioRegister, value);
read32(ioRegister);
return B_OK;
}
void
set_frame_buffer_base()
{
intel_shared_info &sharedInfo = *gInfo->shared_info;
display_mode &mode = sharedInfo.current_mode;
uint32 baseRegister;
uint32 surfaceRegister;
if (gInfo->head_mode & HEAD_MODE_A_ANALOG) {
baseRegister = INTEL_DISPLAY_A_BASE;
surfaceRegister = INTEL_DISPLAY_A_SURFACE;
} else {
baseRegister = INTEL_DISPLAY_B_BASE;
surfaceRegister = INTEL_DISPLAY_B_SURFACE;
}
if (sharedInfo.device_type.InGroup(INTEL_TYPE_96x)
|| sharedInfo.device_type.InGroup(INTEL_TYPE_G4x)) {
write32(baseRegister, mode.v_display_start * sharedInfo.bytes_per_row
+ mode.h_display_start * (sharedInfo.bits_per_pixel + 7) / 8);
read32(baseRegister);
write32(surfaceRegister, sharedInfo.frame_buffer_offset);
read32(surfaceRegister);
} else {
write32(baseRegister, sharedInfo.frame_buffer_offset
+ mode.v_display_start * sharedInfo.bytes_per_row
+ mode.h_display_start * (sharedInfo.bits_per_pixel + 7) / 8);
read32(baseRegister);
}
}
It's called from intel_init_accelerant().
*/
status_t
create_mode_list(void)
{
i2c_bus bus;
bus.cookie = (void*)INTEL_I2C_IO_A;
bus.set_signals = &set_i2c_signals;
bus.get_signals = &get_i2c_signals;
ddc2_init_timing(&bus);
if (ddc2_read_edid1(&bus, &gInfo->edid_info, NULL, NULL) == B_OK) {
edid_dump(&gInfo->edid_info);
gInfo->has_edid = true;
} else {
TRACE(("intel_extreme: getting EDID failed!\n"));
}
if (gInfo->head_mode & HEAD_MODE_LVDS_PANEL
&& ((gInfo->head_mode & HEAD_MODE_A_ANALOG) == 0)) {
size_t size = (sizeof(display_mode) + B_PAGE_SIZE - 1)
& ~(B_PAGE_SIZE - 1);
display_mode *list;
area_id area = create_area("intel extreme modes", (void **)&list,
B_ANY_ADDRESS, size, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA);
if (area < B_OK)
return area;
memcpy(list, &gInfo->lvds_panel_mode, sizeof(display_mode));
gInfo->mode_list_area = area;
gInfo->mode_list = list;
gInfo->shared_info->mode_list_area = gInfo->mode_list_area;
gInfo->shared_info->mode_count = 1;
return B_OK;
}
display_mode *list;
uint32 count = 0;
gInfo->mode_list_area = create_display_modes("intel extreme modes",
gInfo->has_edid ? &gInfo->edid_info : NULL, NULL, 0, NULL, 0, NULL,
&list, &count);
if (gInfo->mode_list_area < B_OK)
return gInfo->mode_list_area;
gInfo->mode_list = list;
gInfo->shared_info->mode_list_area = gInfo->mode_list_area;
gInfo->shared_info->mode_count = count;
return B_OK;
}
void
wait_for_vblank(void)
{
acquire_sem_etc(gInfo->shared_info->vblank_sem, 1, B_RELATIVE_TIMEOUT, 25000);
}
static void
get_pll_limits(pll_limits &limits)
{
if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_G4x)) {
static const pll_limits kLimits = {
{ 28, 2, 14, false, 1, 104, 17, 5},
{112, 8, 0, true, 3, 138, 23, 11},
200000, 1750000, 3500000
};
limits = kLimits;
} else if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
static const pll_limits kLimits = {
{ 5, 1, 10, false, 5, 70, 12, 7},
{ 80, 8, 5, true, 10, 120, 22, 11},
200000, 1400000, 2800000
};
limits = kLimits;
} else {
static const pll_limits kLimits = {
{ 4, 2, 4, false, 5, 96, 20, 8},
{128, 33, 2, true, 18, 140, 28, 18},
165000, 930000, 1400000
};
limits = kLimits;
}
TRACE(("PLL limits, min: p %lu (p1 %lu, p2 %lu), n %lu, m %lu (m1 %lu, m2 %lu)\n",
limits.min.post, limits.min.post1, limits.min.post2, limits.min.n,
limits.min.m, limits.min.m1, limits.min.m2));
TRACE(("PLL limits, max: p %lu (p1 %lu, p2 %lu), n %lu, m %lu (m1 %lu, m2 %lu)\n",
limits.max.post, limits.max.post1, limits.max.post2, limits.max.n,
limits.max.m, limits.max.m1, limits.max.m2));
}
static bool
valid_pll_divisors(const pll_divisors& divisors, const pll_limits& limits)
{
pll_info &info = gInfo->shared_info->pll_info;
uint32 vco = info.reference_frequency * divisors.m / divisors.n;
uint32 frequency = vco / divisors.post;
if (divisors.post < limits.min.post || divisors.post > limits.max.post
|| divisors.m < limits.min.m || divisors.m > limits.max.m
|| vco < limits.min_vco || vco > limits.max_vco
|| frequency < info.min_frequency || frequency > info.max_frequency)
return false;
return true;
}
static void
compute_pll_divisors(const display_mode ¤t, pll_divisors& divisors,
bool isLVDS)
{
float requestedPixelClock = current.timing.pixel_clock / 1000.0f;
float referenceClock = gInfo->shared_info->pll_info.reference_frequency / 1000.0f;
pll_limits limits;
get_pll_limits(limits);
TRACE(("required MHz: %g\n", requestedPixelClock));
if (isLVDS) {
if ((read32(INTEL_DISPLAY_LVDS_PORT) & LVDS_CLKB_POWER_MASK)
== LVDS_CLKB_POWER_UP)
divisors.post2 = LVDS_POST2_RATE_FAST;
else
divisors.post2 = LVDS_POST2_RATE_SLOW;
} else {
if (current.timing.pixel_clock < limits.min_post2_frequency) {
divisors.post2 = limits.min.post2;
divisors.post2_high = limits.min.post2_high;
} else {
divisors.post2 = limits.max.post2;
divisors.post2_high = limits.max.post2_high;
}
}
float best = requestedPixelClock;
pll_divisors bestDivisors;
for (divisors.m1 = limits.min.m1; divisors.m1 <= limits.max.m1; divisors.m1++) {
for (divisors.m2 = limits.min.m2; divisors.m2 < divisors.m1
&& divisors.m2 <= limits.max.m2; divisors.m2++) {
for (divisors.n = limits.min.n; divisors.n <= limits.max.n;
divisors.n++) {
for (divisors.post1 = limits.min.post1;
divisors.post1 <= limits.max.post1; divisors.post1++) {
divisors.m = 5 * divisors.m1 + divisors.m2;
divisors.post = divisors.post1 * divisors.post2;
if (!valid_pll_divisors(divisors, limits))
continue;
float error = fabs(requestedPixelClock
- ((referenceClock * divisors.m) / divisors.n) / divisors.post);
if (error < best) {
best = error;
bestDivisors = divisors;
if (error == 0)
break;
}
}
}
}
}
divisors = bestDivisors;
TRACE(("found: %g MHz, p = %lu (p1 = %lu, p2 = %lu), n = %lu, m = %lu (m1 = %lu, m2 = %lu)\n",
((referenceClock * divisors.m) / divisors.n) / divisors.post,
divisors.post, divisors.post1, divisors.post2, divisors.n,
divisors.m, divisors.m1, divisors.m2));
}
void
retrieve_current_mode(display_mode& mode, uint32 pllRegister)
{
uint32 pll = read32(pllRegister);
uint32 pllDivisor;
uint32 hTotalRegister;
uint32 vTotalRegister;
uint32 hSyncRegister;
uint32 vSyncRegister;
uint32 imageSizeRegister;
uint32 controlRegister;
if (pllRegister == INTEL_DISPLAY_A_PLL) {
pllDivisor = read32((pll & DISPLAY_PLL_DIVISOR_1) != 0
? INTEL_DISPLAY_A_PLL_DIVISOR_1 : INTEL_DISPLAY_A_PLL_DIVISOR_0);
hTotalRegister = INTEL_DISPLAY_A_HTOTAL;
vTotalRegister = INTEL_DISPLAY_A_VTOTAL;
hSyncRegister = INTEL_DISPLAY_A_HSYNC;
vSyncRegister = INTEL_DISPLAY_A_VSYNC;
imageSizeRegister = INTEL_DISPLAY_A_IMAGE_SIZE;
controlRegister = INTEL_DISPLAY_A_CONTROL;
} else if (pllRegister == INTEL_DISPLAY_B_PLL) {
pllDivisor = read32((pll & DISPLAY_PLL_DIVISOR_1) != 0
? INTEL_DISPLAY_B_PLL_DIVISOR_1 : INTEL_DISPLAY_B_PLL_DIVISOR_0);
hTotalRegister = INTEL_DISPLAY_B_HTOTAL;
vTotalRegister = INTEL_DISPLAY_B_VTOTAL;
hSyncRegister = INTEL_DISPLAY_B_HSYNC;
vSyncRegister = INTEL_DISPLAY_B_VSYNC;
imageSizeRegister = INTEL_DISPLAY_B_IMAGE_SIZE;
controlRegister = INTEL_DISPLAY_B_CONTROL;
} else {
return;
}
pll_divisors divisors;
divisors.m1 = (pllDivisor & DISPLAY_PLL_M1_DIVISOR_MASK)
>> DISPLAY_PLL_M1_DIVISOR_SHIFT;
divisors.m2 = (pllDivisor & DISPLAY_PLL_M2_DIVISOR_MASK)
>> DISPLAY_PLL_M2_DIVISOR_SHIFT;
divisors.n = (pllDivisor & DISPLAY_PLL_N_DIVISOR_MASK)
>> DISPLAY_PLL_N_DIVISOR_SHIFT;
pll_limits limits;
get_pll_limits(limits);
if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
divisors.post1 = (pll & DISPLAY_PLL_9xx_POST1_DIVISOR_MASK)
>> DISPLAY_PLL_POST1_DIVISOR_SHIFT;
if (pllRegister == INTEL_DISPLAY_B_PLL
&& !gInfo->shared_info->device_type.InGroup(INTEL_TYPE_96x)) {
divisors.post2 = LVDS_POST2_RATE_SLOW;
} else {
if ((pll & DISPLAY_PLL_DIVIDE_HIGH) != 0)
divisors.post2 = limits.max.post2;
else
divisors.post2 = limits.min.post2;
}
} else {
divisors.post1 = (pll & DISPLAY_PLL_POST1_DIVISOR_MASK)
>> DISPLAY_PLL_POST1_DIVISOR_SHIFT;
if ((pll & DISPLAY_PLL_DIVIDE_4X) != 0)
divisors.post2 = limits.max.post2;
else
divisors.post2 = limits.min.post2;
}
divisors.m = 5 * divisors.m1 + divisors.m2;
divisors.post = divisors.post1 * divisors.post2;
float referenceClock
= gInfo->shared_info->pll_info.reference_frequency / 1000.0f;
float pixelClock
= ((referenceClock * divisors.m) / divisors.n) / divisors.post;
mode.timing.pixel_clock = uint32(pixelClock * 1000);
mode.timing.flags = 0;
uint32 value = read32(hTotalRegister);
mode.timing.h_total = (value >> 16) + 1;
mode.timing.h_display = (value & 0xffff) + 1;
value = read32(hSyncRegister);
mode.timing.h_sync_end = (value >> 16) + 1;
mode.timing.h_sync_start = (value & 0xffff) + 1;
value = read32(vTotalRegister);
mode.timing.v_total = (value >> 16) + 1;
mode.timing.v_display = (value & 0xffff) + 1;
value = read32(vSyncRegister);
mode.timing.v_sync_end = (value >> 16) + 1;
mode.timing.v_sync_start = (value & 0xffff) + 1;
value = read32(imageSizeRegister);
mode.virtual_width = (value >> 16) + 1;
mode.virtual_height = (value & 0xffff) + 1;
if (mode.virtual_width < mode.timing.h_display)
mode.virtual_width = mode.timing.h_display;
if (mode.virtual_height < mode.timing.v_display)
mode.virtual_height = mode.timing.v_display;
value = read32(controlRegister);
switch (value & DISPLAY_CONTROL_COLOR_MASK) {
case DISPLAY_CONTROL_RGB32:
default:
mode.space = B_RGB32;
break;
case DISPLAY_CONTROL_RGB16:
mode.space = B_RGB16;
break;
case DISPLAY_CONTROL_RGB15:
mode.space = B_RGB15;
break;
case DISPLAY_CONTROL_CMAP8:
mode.space = B_CMAP8;
break;
}
mode.h_display_start = 0;
mode.v_display_start = 0;
mode.flags = B_8_BIT_DAC | B_HARDWARE_CURSOR | B_PARALLEL_ACCESS
| B_DPMS | B_SUPPORTS_OVERLAYS;
}
(used for pipe B->lvds).
*/
void
save_lvds_mode(void)
{
display_mode biosMode;
retrieve_current_mode(biosMode, INTEL_DISPLAY_B_PLL);
gInfo->lvds_panel_mode = biosMode;
}
static void
get_color_space_format(const display_mode &mode, uint32 &colorMode,
uint32 &bytesPerRow, uint32 &bitsPerPixel)
{
uint32 bytesPerPixel;
switch (mode.space) {
case B_RGB32_LITTLE:
colorMode = DISPLAY_CONTROL_RGB32;
bytesPerPixel = 4;
bitsPerPixel = 32;
break;
case B_RGB16_LITTLE:
colorMode = DISPLAY_CONTROL_RGB16;
bytesPerPixel = 2;
bitsPerPixel = 16;
break;
case B_RGB15_LITTLE:
colorMode = DISPLAY_CONTROL_RGB15;
bytesPerPixel = 2;
bitsPerPixel = 15;
break;
case B_CMAP8:
default:
colorMode = DISPLAY_CONTROL_CMAP8;
bytesPerPixel = 1;
bitsPerPixel = 8;
break;
}
bytesPerRow = mode.virtual_width * bytesPerPixel;
if ((bytesPerRow & 63) != 0)
bytesPerRow = (bytesPerRow + 63) & ~63;
}
uint32
intel_accelerant_mode_count(void)
{
TRACE(("intel_accelerant_mode_count()\n"));
return gInfo->shared_info->mode_count;
}
status_t
intel_get_mode_list(display_mode *modeList)
{
TRACE(("intel_get_mode_info()\n"));
memcpy(modeList, gInfo->mode_list,
gInfo->shared_info->mode_count * sizeof(display_mode));
return B_OK;
}
status_t
intel_propose_display_mode(display_mode *target, const display_mode *low,
const display_mode *high)
{
TRACE(("intel_propose_display_mode()\n"));
for (uint32 i = 0; i < gInfo->shared_info->mode_count; i++) {
display_mode *mode = &gInfo->mode_list[i];
if (target->virtual_width != mode->virtual_width
|| target->virtual_height != mode->virtual_height
|| target->space != mode->space)
continue;
*target = *mode;
return B_OK;
}
return B_BAD_VALUE;
}
status_t
intel_set_display_mode(display_mode *mode)
{
TRACE(("intel_set_display_mode()\n"));
if (mode == NULL)
return B_BAD_VALUE;
display_mode target = *mode;
if (intel_propose_display_mode(&target, mode, mode))
return B_BAD_VALUE;
uint32 colorMode, bytesPerRow, bitsPerPixel;
get_color_space_format(target, colorMode, bytesPerRow, bitsPerPixel);
#if 0
static bool first = true;
if (first) {
int fd = open("/boot/home/ie_.regs", O_CREAT | O_WRONLY, 0644);
if (fd >= 0) {
for (int32 i = 0; i < 0x80000; i += 16) {
char line[512];
int length = sprintf(line, "%05lx: %08lx %08lx %08lx %08lx\n",
i, read32(i), read32(i + 4), read32(i + 8), read32(i + 12));
write(fd, line, length);
}
close(fd);
sync();
}
first = false;
}
#endif
intel_shared_info &sharedInfo = *gInfo->shared_info;
Autolock locker(sharedInfo.accelerant_lock);
set_display_power_mode(B_DPMS_OFF);
intel_free_memory(sharedInfo.frame_buffer);
uint32 base;
if (intel_allocate_memory(bytesPerRow * target.virtual_height, 0,
base) < B_OK) {
if (intel_allocate_memory(sharedInfo.current_mode.virtual_height
* sharedInfo.bytes_per_row, 0, base) == B_OK) {
sharedInfo.frame_buffer = base;
sharedInfo.frame_buffer_offset = base
- (addr_t)sharedInfo.graphics_memory;
set_frame_buffer_base();
}
return B_NO_MEMORY;
}
memset((uint8 *)base, 0, bytesPerRow * target.virtual_height);
sharedInfo.frame_buffer = base;
sharedInfo.frame_buffer_offset = base - (addr_t)sharedInfo.graphics_memory;
write32(INTEL_VGA_DISPLAY_CONTROL, VGA_DISPLAY_DISABLED);
read32(INTEL_VGA_DISPLAY_CONTROL);
if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_85x)) {
}
if ((gInfo->head_mode & HEAD_MODE_B_DIGITAL) != 0) {
pll_divisors divisors;
compute_pll_divisors(target, divisors, true);
uint32 dpll = DISPLAY_PLL_NO_VGA_CONTROL;
if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
dpll |= LVDS_PLL_MODE_LVDS;
}
dpll |= (1 << (divisors.post1 - 1)) << 16;
switch (divisors.post2) {
case 5:
case 7:
dpll |= DISPLAY_PLL_DIVIDE_HIGH;
break;
}
dpll |= (1 << (divisors.post1 - 1)) << DISPLAY_PLL_POST1_DIVISOR_SHIFT;
uint32 displayControl = ~(DISPLAY_CONTROL_COLOR_MASK
| DISPLAY_CONTROL_GAMMA) | colorMode;
displayControl |= 1 << 24;
displayControl |= DISPLAY_PIPE_ENABLED;
dpll |= DISPLAY_PLL_ENABLED;
write32(INTEL_PANEL_FIT_CONTROL, 0);
if ((dpll & DISPLAY_PLL_ENABLED) != 0) {
write32(INTEL_DISPLAY_B_PLL_DIVISOR_0,
(((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
& DISPLAY_PLL_N_DIVISOR_MASK)
| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
& DISPLAY_PLL_M1_DIVISOR_MASK)
| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
& DISPLAY_PLL_M2_DIVISOR_MASK));
write32(INTEL_DISPLAY_B_PLL, dpll & ~DISPLAY_PLL_ENABLED);
read32(INTEL_DISPLAY_B_PLL);
spin(150);
}
uint32 lvds = read32(INTEL_DISPLAY_LVDS_PORT)
| LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
float referenceClock = gInfo->shared_info->pll_info.reference_frequency
/ 1000.0f;
if (divisors.post2 == LVDS_POST2_RATE_FAST)
lvds |= LVDS_B0B3PAIRS_POWER_UP | LVDS_CLKB_POWER_UP;
else
lvds &= ~( LVDS_B0B3PAIRS_POWER_UP | LVDS_CLKB_POWER_UP);
write32(INTEL_DISPLAY_LVDS_PORT, lvds);
read32(INTEL_DISPLAY_LVDS_PORT);
write32(INTEL_DISPLAY_B_PLL_DIVISOR_0,
(((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
& DISPLAY_PLL_N_DIVISOR_MASK)
| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
& DISPLAY_PLL_M1_DIVISOR_MASK)
| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
& DISPLAY_PLL_M2_DIVISOR_MASK));
write32(INTEL_DISPLAY_B_PLL, dpll);
read32(INTEL_DISPLAY_B_PLL);
spin(150);
if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_96x)) {
float adjusted = ((referenceClock * divisors.m) / divisors.n)
/ divisors.post;
uint32 pixelMultiply = uint32(adjusted
/ (target.timing.pixel_clock / 1000.0f));
write32(INTEL_DISPLAY_B_PLL_MULTIPLIER_DIVISOR, (0 << 24)
| ((pixelMultiply - 1) << 8));
} else
write32(INTEL_DISPLAY_B_PLL, dpll);
read32(INTEL_DISPLAY_B_PLL);
spin(150);
write32(INTEL_DISPLAY_B_HTOTAL, ((uint32)(target.timing.h_total - 1) << 16)
| ((uint32)target.timing.h_display - 1));
write32(INTEL_DISPLAY_B_HBLANK, ((uint32)(target.timing.h_total - 1) << 16)
| ((uint32)target.timing.h_display - 1));
write32(INTEL_DISPLAY_B_HSYNC, ((uint32)(target.timing.h_sync_end - 1) << 16)
| ((uint32)target.timing.h_sync_start - 1));
write32(INTEL_DISPLAY_B_VTOTAL, ((uint32)(target.timing.v_total - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_B_VBLANK, ((uint32)(target.timing.v_total - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_B_VSYNC, ((uint32)(target.timing.v_sync_end - 1) << 16)
| ((uint32)target.timing.v_sync_start - 1));
write32(INTEL_DISPLAY_B_IMAGE_SIZE, ((uint32)(target.timing.h_display - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_B_POS, 0);
write32(INTEL_DISPLAY_B_PIPE_SIZE, ((uint32)(target.timing.v_display - 1) << 16)
| ((uint32)target.timing.h_display - 1));
write32(INTEL_DISPLAY_B_PIPE_CONTROL,
read32(INTEL_DISPLAY_B_PIPE_CONTROL) | DISPLAY_PIPE_ENABLED);
read32(INTEL_DISPLAY_B_PIPE_CONTROL);
}
if (gInfo->head_mode & HEAD_MODE_A_ANALOG) {
pll_divisors divisors;
compute_pll_divisors(target, divisors,false);
write32(INTEL_DISPLAY_A_PLL_DIVISOR_0,
(((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT) & DISPLAY_PLL_N_DIVISOR_MASK)
| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT) & DISPLAY_PLL_M1_DIVISOR_MASK)
| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT) & DISPLAY_PLL_M2_DIVISOR_MASK));
uint32 pll = DISPLAY_PLL_ENABLED | DISPLAY_PLL_NO_VGA_CONTROL;
if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
pll |= ((1 << (divisors.post1 - 1))
<< DISPLAY_PLL_POST1_DIVISOR_SHIFT)
& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
if (divisors.post2_high)
pll |= DISPLAY_PLL_DIVIDE_HIGH;
pll |= DISPLAY_PLL_MODE_ANALOG;
if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_96x))
pll |= 6 << DISPLAY_PLL_PULSE_PHASE_SHIFT;
} else {
if (!divisors.post2_high)
pll |= DISPLAY_PLL_DIVIDE_4X;
pll |= DISPLAY_PLL_2X_CLOCK;
if (divisors.post1 > 2) {
pll |= (((divisors.post1 - 2) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
& DISPLAY_PLL_POST1_DIVISOR_MASK);
} else
pll |= DISPLAY_PLL_POST1_DIVIDE_2;
}
write32(INTEL_DISPLAY_A_PLL, pll);
read32(INTEL_DISPLAY_A_PLL);
spin(150);
write32(INTEL_DISPLAY_A_PLL, pll);
read32(INTEL_DISPLAY_A_PLL);
spin(150);
write32(INTEL_DISPLAY_A_HTOTAL, ((uint32)(target.timing.h_total - 1) << 16)
| ((uint32)target.timing.h_display - 1));
write32(INTEL_DISPLAY_A_HBLANK, ((uint32)(target.timing.h_total - 1) << 16)
| ((uint32)target.timing.h_display - 1));
write32(INTEL_DISPLAY_A_HSYNC, ((uint32)(target.timing.h_sync_end - 1) << 16)
| ((uint32)target.timing.h_sync_start - 1));
write32(INTEL_DISPLAY_A_VTOTAL, ((uint32)(target.timing.v_total - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_A_VBLANK, ((uint32)(target.timing.v_total - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_A_VSYNC, ((uint32)(target.timing.v_sync_end - 1) << 16)
| ((uint32)target.timing.v_sync_start - 1));
write32(INTEL_DISPLAY_A_IMAGE_SIZE, ((uint32)(target.timing.h_display - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_A_ANALOG_PORT, (read32(INTEL_DISPLAY_A_ANALOG_PORT)
& ~(DISPLAY_MONITOR_POLARITY_MASK | DISPLAY_MONITOR_VGA_POLARITY))
| ((target.timing.flags & B_POSITIVE_HSYNC) != 0 ? DISPLAY_MONITOR_POSITIVE_HSYNC : 0)
| ((target.timing.flags & B_POSITIVE_VSYNC) != 0 ? DISPLAY_MONITOR_POSITIVE_VSYNC : 0));
write32(INTEL_DISPLAY_A_CONTROL, (read32(INTEL_DISPLAY_A_CONTROL)
& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA)) | colorMode);
if (gInfo->head_mode & HEAD_MODE_B_DIGITAL) {
write32(INTEL_DISPLAY_B_IMAGE_SIZE, ((uint32)(target.timing.h_display - 1) << 16)
| ((uint32)target.timing.v_display - 1));
write32(INTEL_DISPLAY_B_CONTROL, (read32(INTEL_DISPLAY_B_CONTROL)
& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA)) | colorMode);
}
}
set_display_power_mode(sharedInfo.dpms_mode);
if (gInfo->head_mode & HEAD_MODE_A_ANALOG)
write32(INTEL_DISPLAY_A_BYTES_PER_ROW, bytesPerRow);
if (gInfo->head_mode & HEAD_MODE_B_DIGITAL)
write32(INTEL_DISPLAY_B_BYTES_PER_ROW, bytesPerRow);
set_frame_buffer_base();
sharedInfo.bytes_per_row = bytesPerRow;
sharedInfo.current_mode = target;
sharedInfo.bits_per_pixel = bitsPerPixel;
return B_OK;
}
status_t
intel_get_display_mode(display_mode *_currentMode)
{
TRACE(("intel_get_display_mode()\n"));
retrieve_current_mode(*_currentMode, INTEL_DISPLAY_A_PLL);
return B_OK;
}
status_t
intel_get_edid_info(void* info, size_t size, uint32* _version)
{
TRACE(("intel_get_edid_info()\n"));
if (!gInfo->has_edid)
return B_ERROR;
if (size < sizeof(struct edid1_info))
return B_BUFFER_OVERFLOW;
memcpy(info, &gInfo->edid_info, sizeof(struct edid1_info));
*_version = EDID_VERSION_1;
return B_OK;
}
status_t
intel_get_frame_buffer_config(frame_buffer_config *config)
{
TRACE(("intel_get_frame_buffer_config()\n"));
uint32 offset = gInfo->shared_info->frame_buffer_offset;
config->frame_buffer = gInfo->shared_info->graphics_memory + offset;
config->frame_buffer_dma
= (uint8 *)gInfo->shared_info->physical_graphics_memory + offset;
config->bytes_per_row = gInfo->shared_info->bytes_per_row;
return B_OK;
}
status_t
intel_get_pixel_clock_limits(display_mode *mode, uint32 *_low, uint32 *_high)
{
TRACE(("intel_get_pixel_clock_limits()\n"));
if (_low != NULL) {
uint32 totalClocks = (uint32)mode->timing.h_total * (uint32)mode->timing.v_total;
uint32 low = (totalClocks * 48L) / 1000L;
if (low < gInfo->shared_info->pll_info.min_frequency)
low = gInfo->shared_info->pll_info.min_frequency;
else if (low > gInfo->shared_info->pll_info.max_frequency)
return B_ERROR;
*_low = low;
}
if (_high != NULL)
*_high = gInfo->shared_info->pll_info.max_frequency;
return B_OK;
}
status_t
intel_move_display(uint16 horizontalStart, uint16 verticalStart)
{
TRACE(("intel_move_display()\n"));
intel_shared_info &sharedInfo = *gInfo->shared_info;
Autolock locker(sharedInfo.accelerant_lock);
display_mode &mode = sharedInfo.current_mode;
if (horizontalStart + mode.timing.h_display > mode.virtual_width
|| verticalStart + mode.timing.v_display > mode.virtual_height)
return B_BAD_VALUE;
mode.h_display_start = horizontalStart;
mode.v_display_start = verticalStart;
set_frame_buffer_base();
return B_OK;
}
status_t
intel_get_timing_constraints(display_timing_constraints *constraints)
{
TRACE(("intel_get_timing_contraints()\n"));
return B_ERROR;
}
void
intel_set_indexed_colors(uint count, uint8 first, uint8 *colors, uint32 flags)
{
TRACE(("intel_set_indexed_colors(colors = %p, first = %u)\n", colors, first));
if (colors == NULL)
return;
Autolock locker(gInfo->shared_info->accelerant_lock);
for (; count-- > 0; first++) {
uint32 color = colors[0] << 16 | colors[1] << 8 | colors[2];
colors += 3;
if (gInfo->head_mode & HEAD_MODE_A_ANALOG)
write32(INTEL_DISPLAY_A_PALETTE + first * sizeof(uint32), color);
if (gInfo->head_mode & HEAD_MODE_B_DIGITAL)
write32(INTEL_DISPLAY_B_PALETTE + first * sizeof(uint32), color);
}
}